【活动目标】1.发展幼儿对颜色、6以内数量的感知。2.幼儿能尝试简单的分类。3.体验快乐的情绪。 【活动准备】 红、黄、绿花若干;红、黄、绿圆点即时贴若干;白色纸花,花心分别为红、黄、绿,花瓣为4、5、6片;音乐磁带《春天》《找朋友》;贴有数字4、5、6的三个花篮。
【教学过程】(一)观图激趣、设疑导入 出示课件的第一张幻灯片。1、成正比例的量有什么特征?2、正比例关系式。生1:两种相关联的量,一种量变化,另一种量也随着变化。生2:两种量中相对应的两个量的比值(商)一定。生3:=k(一定)。师:同学们非常棒!我们今天继续学习两种量的另外一种关系。 (板书:成反比例的量)【设计意图】这种方法的导入,简简单单的一道练习题,把学生的注意力吸引到本节主要内容上来,激起学生的好奇心,真的还有另外一种关系!我可得好好听一听。这样在学习反比例时学生会始终保持高度的精神集中,有利于教师教学顺利进行。(二)探究新知教学例2,探究反比例的意义,理解成反比例的量。1、出示PPT课件回答问题。杯子的底面积与水的高度的变化情况如下表。 杯子的底面积/cm²1015203060…水的高度/cm302015105…观察上表,回答下面的问题。(1)表中有哪两种量?(2)水的高度是怎样随着杯子底面积的大小变化而变化的?(3)相对应的杯子的底面积与水的高度的乘积分别是多少?生1:表中有杯子的底面积和水的高度这两种量。生2:从表中可以看出:水的高度随着杯子的底面积的变大而不断变小,这两种量是相关联的两种量。生3:我来回答(3),相对应的杯子的底面积与水的高度的乘积分别是:10×30=15×20=20×15=30×10=60×5=…=300。生4:乘积一定。师:底面积与高的乘积表示的是什么?生:水的体积。(板书)师:你会算出水的体积吗?生:会。(学生计算,教师出示课件订正)2、揭示反比例的意义。师:积是300,实际就是倒入杯子的水的体积。同学们能用式子表示出它们的关系吗?生:它们的关系是:底面积×高=体积。师:同学们,我们用概括正比例意义时的方法来概括一下反比例的意义吧!生:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。(板书反比例的意义)3、用字母表示反比例关系:xy=k(一定)。(板书)4、牛刀小试。锅炉房烧煤的天数与每天烧煤的吨数如下表: 每天烧煤的吨数/吨11.522.53烧煤的天数/天3020151210(1)表中有哪两种量?它们是不是相关联的量?(2)写出几组这两种量中相对应的两个数的积,并比较大小,说一说这个积表示什么。(3)烧煤的天数与每天烧煤的吨数成反比例吗?为什么?【参考答案】 (1)每天烧煤的吨数和烧煤的天数,是相关联的量。 (2)1×30=30 1.5×20=30 2×15=30 2.5×12=30 3×10=30 积相等,这个积表示这批煤的总吨数。 (3)成反比例,因为烧煤的天数与每天烧煤的吨数的积一定。【设计意图】学生通过观察、发现、概括经历了整个学习过程,逐步形成定向思维方式,为学会学习打好基础。
2.过程与方法 通过实践操作、猜想验证、合作探究,经历发现“三角形任意两边的和大于第三边”这一性质的活动过程,发展空间观念,培养逻辑思维能力,体验“做数学”的成功。3.情感态度与价值观 (1)发现生活中的数学美,会从美观和实用的角度解决生活中的数学问题。 (2)学会从全面、周到的角度考虑问题。 【教学重点】 理解、掌握“三角形任意两边之和大于第三边”的性质;理解两点间的距离的含义。【教学难点】 引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。【教学方法】启发式教学、自主探索、合作交流、讨论法、讲解法。【课前准备】多媒体、学具袋【课时安排】 1课时【教学过程】(一)复习导入 师:什么样的图形叫三角形?生交流:由3条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
(一)观图激趣、设疑导入 师:上一节我们已经认识了比例,知道两个比怎样才能组成比例,下面请同学们判断一下下面各组的比能否组成比例。(1)0.4∶和1.2∶2 (2)和生1:根据比例的意义,第(1)题,这两个比的比值相等,都是0.6,所以(1)题的两个比能组成比例。生2:我来回答第(2)题,我也利用比例的意义,求出=5,=6,这两个比的比值不相等,所以第(2)题的两个比不能组成比例。师:这两名同学回答的真好,有理有据,让我们为他们的表现鼓掌!师:今天这节课,我们将共同来学习用另一种方法来判断两个比能否组成比例,同学们想知道是什么方法吗?生:想知道。师:那就是比例的基本性质(板书课题:比例的基本性质)。【设计意图】复习学生已有的知识,唤醒学生已有学习经验,教师的提问吸引了学生的注意力,也引发学生的好奇心,为学习新知识开了一个好头。
(一)观图激趣、设疑导入 出示课件的第一张幻灯片。师:求比值,完成后,说说求比值的方法,这三个比值是什么关系?18∶12 27∶18 2.4∶1.6生1:用比的前项除以比的后项。生2:这三个比值相等。……【参考答案】 18∶12= 27∶18= 2.4∶1.6= 求比值的方法是用比的前项除以比的后项,这三个比值相等。【设计意图】比和比值是解决比例意义的关键所在,只有唤醒学生已有经验,才能更好地让学生投入到学习比例意义活动中来,为实现教学目标做好铺垫。(二)探究新知师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们对国旗都有哪些了解呢? 生1:我们的国旗是红色的,上面有五颗黄色的五角星。生2:我们的国旗是长方形的。师:同学们回答得真好,说出了自己对国旗的了解,可以看出同学们对我们国家的热爱,老师希望你们一定要好好学习,为我们的五星红旗增光!五星红旗是庄严而美丽的, 并且它与我们数学也有着密切的联系,这也就是我们今天所要研究的内容——比例。(板书课题:比例的意义)国旗长5米,宽米。国旗长2.4米,宽1.6米。国旗长60厘米,宽40厘米。
(一)观图激趣、设疑导入 出示课件的第一张幻灯片。师:老师这里有三道题哪位同学会做?1、已知路程和时间,怎样求速度?2、已知总价和数量,怎样求单价?3、已知工作总量和工作时间,怎样求工作效率?生1:速度=路程÷时间。生2:单价=总价÷数量。生3:工作效率=工作总量÷工作时间。师:同学们可真棒!这节课我们就来研究这些数量间的一些规律和特征。你们准备好了吗?生:准备好了!(板书:成正比例的量)【设计意图】引发学生学习的兴趣,唤起学生已有的只是经验,更好地进行新旧知识的结合,也有利于引导学生发现数量关系内在的规律。(二)探究新知(PPT课件出示例1)文具店有一种铅笔,销售的数量与总价的关系如下表。 数量/支12345678…总价/元3.5710.51417.52124.528…观察上表,回答下面的问题。(1)表中有哪两种量?(2)总价是怎样随着数量的变化而变化的?(3)相应的总价与数量的比分别是多少?比值是多少?1.探究数量与总价两个量之间的关系。师:仔细观察这张表格,它为我们提供了哪些数学信息?生:给我们提供了文具店销售彩带的数量是1,2,3,4,5,6,7,8米,总价分别是:3.5, 7,10.5,14,17.5,21,24.5,28元。师:表中有哪两种量?生:有数量和总价两种量。师:总价是怎样随着数量的变化而变化的?生:总价是随数量的增加而增加的。师:相应的总价与数量的比分别是多少?比值是多少?生1:=3.5 =3.5 =3.5 =3.5 =3.5 =3.5 =3.5 =3.5生2:相对应的总价和数量的比的比值是一定的。师:总价与数量的比值表示什么?
(一)激趣导入 课件出示一些图片:师:同学们,今天老师给你们带来了一些礼物,大家想不想知道是什么?我们一起看大屏幕:你们认识这些物体吗?在生活中见到过吗?生:比萨斜塔、治安岗亭、茶叶盒、客家围屋。师:今天这节课我们重点来研究这些物体。(二)探究新知 1. 认识圆柱。师:这些物体什么形状的?它们的形状有什么共同特点?生:这些物体都是圆柱形的。师小结:这些物体的形状都是圆柱体,简称圆柱。说一说生活中有哪些圆柱形的物体。2.探究圆柱的特特征。(1)认识底面小组活动: 观察圆柱形物体,看看它是有几部分组成的,有什么特征?课件演示:圆柱的上、下两个面叫做底面,是两个完全相同的圆。 师:请同学们量一量、算一算圆柱的两个底面有什么关系?生1:两个底面的直径相等、半径相等。生2:两个底面的周长相等、面积相等。师小结:圆柱的底面是两个完全相同的圆。(2)认识侧面课件演示:圆柱周围的面叫做侧面,侧面是一个曲面。师:请同学们指一指圆柱的侧面,再用手摸一摸,有什么感觉?生:侧面是弯曲的。师:侧面是一个曲面。
新知探究我们知道,等差数列的特征是“从第2项起,每一项与它的前一项的差都等于同一个常数” 。类比等差数列的研究思路和方法,从运算的角度出发,你觉得还有怎样的数列是值得研究的?1.两河流域发掘的古巴比伦时期的泥版上记录了下面的数列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《庄子·天下》中提到:“一尺之锤,日取其半,万世不竭.”如果把“一尺之锤”的长度看成单位“1”,那么从第1天开始,每天得到的“锤”的长度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在营养和生存空间没有限制的情况下,某种细菌每20 min 就通过分裂繁殖一代,那么一个这种细菌从第1次分裂开始,各次分裂产生的后代个数依次是2,4,8,16,32,64,… ⑤4.某人存入银行a元,存期为5年,年利率为 r ,那么按照复利,他5年内每年末得到的本利和分别是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一. 他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献. 问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,"… " 前100项的和问题.等差数列中,下标和相等的两项和相等.设 an=n,则 a1=1,a2=2,a3=3,…如果数列{an} 是等差数列,p,q,s,t∈N*,且 p+q=s+t,则 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51问题2: 你能用上述方法计算1+2+3+… +101吗?问题3: 你能计算1+2+3+… +n吗?需要对项数的奇偶进行分类讨论.当n为偶数时, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2当n为奇数数时, n-1为偶数
新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.
我们知道数列是一种特殊的函数,在函数的研究中,我们在理解了函数的一般概念,了解了函数变化规律的研究内容(如单调性,奇偶性等)后,通过研究基本初等函数不仅加深了对函数的理解,而且掌握了幂函数,指数函数,对数函数,三角函数等非常有用的函数模型。类似地,在了解了数列的一般概念后,我们要研究一些具有特殊变化规律的数列,建立它们的通项公式和前n项和公式,并应用它们解决实际问题和数学问题,从中感受数学模型的现实意义与应用,下面,我们从一类取值规律比较简单的数列入手。新知探究1.北京天坛圜丘坛,的地面有十板布置,最中间是圆形的天心石,围绕天心石的是9圈扇环形的石板,从内到外各圈的示板数依次为9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型号的女装上对应的尺码分别是38,40,42,44,46,48 ②3.测量某地垂直地面方向上海拔500米以下的大气温度,得到从距离地面20米起每升高100米处的大气温度(单位℃)依次为25,24,23,22,21 ③
情景导学古语云:“勤学如春起之苗,不见其增,日有所长”如果对“春起之苗”每日用精密仪器度量,则每日的高度值按日期排在一起,可组成一个数列. 那么什么叫数列呢?二、问题探究1. 王芳从一岁到17岁,每年生日那天测量身高,将这些身高数据(单位:厘米)依次排成一列数:75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①记王芳第i岁的身高为 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我们发现h_i中的i反映了身高按岁数从1到17的顺序排列时的确定位置,即h_1=75 是排在第1位的数,h_2=87是排在第2位的数〖"…" ,h〗_17 =168是排在第17位的数,它们之间不能交换位置,所以①具有确定顺序的一列数。2. 在两河流域发掘的一块泥板(编号K90,约生产于公元前7世纪)上,有一列依次表示一个月中从第1天到第15天,每天月亮可见部分的数:5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.3节《不同增长函数的差异》 是在学习了指数函数、对数函数和幂函数之后的对函数学习的一次梳理和总结。本节提出函数增长快慢的问题,通过函数图像及三个函数的性质,完成函数增长快慢的认识。既是对三种函数学习的总结,也为后续导数的学习做了铺垫。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1.了解指数函数、对数函数、幂函数 (一次函数) 的增长差异.2、经过探究对函数的图像观察,理解对数增长、直线上升、指数爆炸。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;3、在认识函数增长差异的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,探索数学。 a.数学抽象:函数增长快慢的认识;b.逻辑推理:由特殊到一般的推理;
本节课选自《普通高中课程标准数学教科书-必修一》(人教A版)第三章《函数的概念与性质》,本节课是第2课时,本节课主要学习函数的三种表示方法及其简单应用,进一步加深对函数概念的理解。课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.课程目标 学科素养A.在实际情景中,会根据不同的需要选择恰当的方法(解析式法、图象法、列表法)表示函数;B.了解简单的分段函数,并能简单地应用;1.数学抽象:函数解析法及能由条件求函数的解析式;2.逻辑推理:求函数的解析式;
对数函数与指数函数是相通的,本节在已经学习指数函数的基础上通过实例总结归纳对数函数的概念,通过函数的形式与特征解决一些与对数函数有关的问题.课程目标1、通过实际问题了解对数函数的实际背景;2、掌握对数函数的概念,并会判断一些函数是否是对数函数. 数学学科素养1.数学抽象:对数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用对数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结对数函数概念.重点:理解对数函数的概念和意义;难点:理解对数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入我们已经研究了死亡生物体内碳14的含量y随死亡时间x的变化而衰减的规律.反过来,已知死亡生物体内碳14的含量,如何得知死亡了多长时间呢?进一步地,死亡时间t是碳14的含量y的函数吗?
由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此本节课利用单位圆中的三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.课程目标1.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.2.理解正弦曲线与余弦曲线之间的联系. 数学学科素养1.数学抽象:正弦曲线与余弦曲线的概念; 2.逻辑推理:正弦曲线与余弦曲线的联系; 3.直观想象:正弦函数余弦函数的图像; 4.数学运算:五点作图; 5.数学建模:通过正弦、余弦图象图像,解决不等式问题及零点问题,这正是数形结合思想方法的应用.
本节课是正弦函数、余弦函数图像的继续,本课是正弦曲线、余弦曲线这两种曲线的特点得出正弦函数、余弦函数的性质. 课程目标1.了解周期函数与最小正周期的意义;2.了解三角函数的周期性和奇偶性;3.会利用周期性定义和诱导公式求简单三角函数的周期;4.借助图象直观理解正、余弦函数在[0,2π]上的性质(单调性、最值、图象与x轴的交点等);5.能利用性质解决一些简单问题. 数学学科素养1.数学抽象:理解周期函数、周期、最小正周期等的含义; 2.逻辑推理: 求正弦、余弦形函数的单调区间;3.数学运算:利用性质求周期、比较大小、最值、值域及判断奇偶性.4.数学建模:让学生借助数形结合的思想,通过图像探究正、余弦函数的性质.重点:通过正弦曲线、余弦曲线这两种曲线探究正弦函数、余弦函数的性质; 难点:应用正、余弦函数的性质来求含有cosx,sinx的函数的单调性、最值、值域及对称性.
指数函数与幂函数是相通的,本节在已经学习幂函数的基础上通过实例总结归纳指数函数的概念,通过函数的三个特征解决一些与函数概念有关的问题.课程目标1、通过实际问题了解指数函数的实际背景;2、理解指数函数的概念和意义.数学学科素养1.数学抽象:指数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用指数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结指数函数概念.重点:理解指数函数的概念和意义;难点:理解指数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入在本章的开头,问题(1)中时间 与GDP值中的 ,请问这两个函数有什么共同特征.要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
二、说教学目标1、我根据教材的内容和新课程标准实施要求,并结合学生的学情确定了以下教学目标:知识与能力(1)联系学生生活实际,创设情境。让学生探索小数加减法的竖式写法。(2)掌握小数加、减法的运算方法,理解小数点对齐的道理。过程与方法(1)通过小组合作学习交流,掌握小数的加减法笔算方法。(2)能利用所学知识解决生活中的一些简单问题。情感、态度、价值观(1)通过相互讨论、合作交流,养成合作互助意识和团队精神,提高数学交流的能力。(2)通过具体情景的创设,培养学生发现数学问题,解决问题的意识,激发数学学习积极性,激发学生的爱国主义精神。2、教学重、难点 (1)教学重点:掌握小数加、减法的计算方法以及对小数点的处理。 (2)教学难点:①理解小数点对齐的道理; ②弄清“得数的末尾如何去0简写”的道理。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。