《前夜》讲述的是在新中国成立建国前夕,为了保证毛主席在开国大典时能够顺利按动电钮,让第一面五星红旗在天安门广场升起,无数人在背后默默奉献的故事。这一面红旗不仅仅只是一块红布,这是二十八年革命,两千万人的牺牲所换来的红旗,所以他们要做的就是保证在升旗的时候——万无一失。可是偏偏在最关键的时刻却出现了问题,而在材料有限、时间紧急的情况下他们不得不向人民求助。之后,源源不断的人带着自己认为有帮助的东西来了。有愿意捐出自己珍贵lu音机的大汉、有拿出自己烟袋锅的大爷、有把自己勺子带过来的厨师、还有愿意拿出自己孩子长命锁的妇人,还有清华大学化学系的教授……最后问题终于顺利解决,这靠的是大家的共同努力、和希望为祖国尽一份自己力量的心。虽然那时的中国贫穷、技术也落后,但中国人民不会退缩,只会迎难而上使自己变得更强。
在实习的日子里,我们主要负责二年级、五年级和六年级的体育课教学。在实习最开始的时候我们看指导老师上课,以一个“老师”的身份看他是如何上课的,学习他如何传授知识、驾驭课堂,如何控制授课时间等等。通过听课我发现教师不仅对知识和技能的把握很重要,对学生的课堂纪律、积极性的调动都很重要。只有把握好课堂纪律、学生学习的积极性,才能让我们的学生在上课的时候真正的学到运动技能,并真正达到锻炼身体的目的。
第三,要奉献爱心。崇高的师爱表现在对学生一视同仁,绝不厚此薄彼,按成绩区别对待。要做到“三心俱到”,即“爱心、耐心、细心,”无论在生活上还是学习上,时时刻刻关爱学生,特别对那些学习特困生,更要付出特殊的关爱,切忌言行过激、办事草率。对学生细微之处的改变也要善于发现,发现他们“闪光点”,并且多加鼓励,培养学生健康的人格,树立学生学习的自信心,注重培养他们的学习兴趣。 第四,要以身作则。教师的一言一行、一举一动对学生的思想、行为和品质具有潜移默化的影响,学生们都喜欢模仿。为此,教师一定要时时处处为学生做出榜样,凡是教师要求学生要做到的,自己首先做到;凡是要求学生不能做的,自己坚决不做。只有严于律已,以身作则,诲人不倦,才能让学生心服口服,才能把教师当成良师益友。
二、 示范引导,引导孩子养成良好的学习习惯 学习是提高自身素养、增长才干的唯一途径。在日常的工作生活中,只有不断地学习、持续的学习,才能不断地增长知识、完善自我,促进自身的成长和发展,作为一个自然人是这样,但是为人父母还要担负起教育孩子、培养孩子的责任和义务,特别是作为青春期的中学生更应该多给予帮助和引导,避免出现偏差,而影响成长和学习。孩子是我们的未来和希望,孩子能否健康的成长和发展,事关社会的发展和时代的进步、事关民族的前途和命运。因此,作为父母必须首先做到率先垂范,在学习上给孩子当好向导或导游,坚决不能做帮手,引导孩子加强基础知识的学习,养成良好的学习习惯、认真思考的习惯。比如:孩子在做作业的时候遇到拦路虎,不要急着给他解题或是教给他怎样去做,而是应该给他讲关于该习题的原理、公式或带领着复习相关的内容,引导孩子自己去独立思考、独立完成,这样还能增强孩子的理解和记忆;其次是培养孩子的学习兴趣,引导孩子做到“学习快乐化、快乐学习化”
二、学情分析:学生目前对形变和弹力有一定的感性认识但是不够深入;知道支持力、压力都是弹力,但是不能够概括产生的原因。理性思维还没有达到一定的层次,要想理解弹力这一抽象概念还有一定困难。因此我采取引导、启发的教学方式。
一、教学目标(一)知识教育点使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.(二)能力训练点要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.(三)学科渗透点通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育.二、教材分析1.重点:抛物线的定义和标准方程.2.难点:抛物线的标准方程的推导.三、活动设计提问、回顾、实验、讲解、板演、归纳表格.四、教学过程(一)导出课题我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.首先,利用篮球和排球的运动轨迹给出抛物线的实际意义,再利用太阳灶和抛物线型的桥说明抛物线的实际用途。
教学目的:理解并熟练掌握正态分布的密度函数、分布函数、数字特征及线性性质。教学重点:正态分布的密度函数和分布函数。教学难点:正态分布密度曲线的特征及正态分布的线性性质。教学学时:2学时教学过程:第四章 正态分布§4.1 正态分布的概率密度与分布函数在讨论正态分布之前,我们先计算积分。首先计算。因为(利用极坐标计算)所以。记,则利用定积分的换元法有因为,所以它可以作为某个连续随机变量的概率密度函数。定义 如果连续随机变量的概率密度为则称随机变量服从正态分布,记作,其中是正态分布的参数。正态分布也称为高斯(Gauss)分布。
教学准备 1. 教学目标 知识与技能掌握双曲线的定义,掌握双曲线的四种标准方程形式及其对应的焦点、准线.过程与方法掌握对双曲线标准方程的推导,进一步理解求曲线方程的方法——坐标法.通过本节课的学习,提高学生观察、类比、分析和概括的能力.情感、态度与价值观通过本节的学习,体验研究解析几何的基本思想,感受圆锥曲线在刻画现实和解决实际问题中的作用,进一步体会数形结合的思想.2. 教学重点/难点 教学重点双曲线的定义及焦点及双曲线标准方程.教学难点在推导双曲线标准方程的过程中,如何选择适当的坐标系. 3. 教学用具 多媒体4. 标签
本人所教的两个班级学生普遍存在着数学科基础知识较为薄弱,计算能力较差,综合能力不强,对数学学习有一定的困难。在课堂上的主体作用的体现不是太充分,但是他们能意识到自己的不足,对数学课的学习兴趣高,积极性强。 学生在学习交往上表现为个别化学习,课堂上较为依赖老师的引导。学生的群体性小组交流能力与协同讨论学习的能力不强,对学习资源和知识信息的获取、加工、处理和综合的能力较低。在教学中尽量分析细致,减少跨度较大的环节,对重要的推导过程采用板书方式逐步进行,力求让绝大多数学生接受。 1.理解椭圆标准方程的推导;掌握椭圆的标准方程;会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标. 2.通过椭圆图形的研究和标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用。 1.让学生经历椭圆标准方程的推导过程,进一步掌握求曲线方程的一般方法,体会数形结合等数学思想;培养学生运用类比、联想等方法提出问题. 2.培养学生运用数形结合的思想,进一步掌握利用方程研究曲线的基本方法,通过与椭圆几何性质的对比来提高学生联想、类比、归纳的能力,解决一些实际问题。 1.通过具体的情境感知研究椭圆标准方程的必要性和实际意义;体会数学的对称美、简洁美,培养学生的审美情趣,形成学习数学知识的积极态度. 2.进一步理解并掌握代数知识在解析几何运算中的作用,提高解方程组和计算能力,通过“数”研究“形”,说明“数”与“形”存在矛盾的统一体中,通过“数”的变化研究“形”的本质。帮助学生建立勇于探索创新的精神和克服困难的信心。
4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).
探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.
二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√
2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?
(2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.
3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.
解析:因为减法和除法运算中交换两个数的位置对计算结果有影响,所以属于组合的有2个.答案:B2.若A_n^2=3C_(n"-" 1)^2,则n的值为( )A.4 B.5 C.6 D.7 解析:因为A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故选C.答案:C 3.若集合A={a1,a2,a3,a4,a5},则集合A的子集中含有4个元素的子集共有 个. 解析:满足要求的子集中含有4个元素,由集合中元素的无序性,知其子集个数为C_5^4=5.答案:54.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?解:(方法一)我们把从共线的4个点中取点的多少作为分类的标准:第1类,共线的4个点中有2个点作为三角形的顶点,共有C_4^2·C_8^1=48(个)不同的三角形;第2类,共线的4个点中有1个点作为三角形的顶点,共有C_4^1·C_8^2=112(个)不同的三角形;第3类,共线的4个点中没有点作为三角形的顶点,共有C_8^3=56(个)不同的三角形.由分类加法计数原理,不同的三角形共有48+112+56=216(个).(方法二 间接法)C_12^3-C_4^3=220-4=216(个).
31.阅读下列材料,回答问题。材料一 农,天下之大本也,民所恃以生也。而民或不务本而事末,故生不遂。——汉文帝材料二 世儒不察,以工商为末。妄议抑之。夫工商圣王之所欲来,商又使其愿出于途者,盖皆本也。——黄宗羲(1)材料一反映了中国古代哪一重要思想?据此,西汉统治者采取了哪些措施?(2)材料二中黄宗羲提出了什么主张?应如何评价这一主张?
(1)材料一中,谁曾经走过古丝绸之路?材料二 海上丝绸之路把丝绸远销海外,还把中国古代的发明创造,如(四大发明) 、 、 、印刷术、瓷器、医学、中草药等传布到世界各地。——陈炎《海上丝绸之路与中外文化交流》(2)请将材料二中三处画“_______” 的部分在答题卡上补充完整。材料三 明朝中期,随着日本国内社会动荡加剧,特别是由于明朝国力减弱,海防松懈,倭寇与中国海盗奸商等相互勾结,对中国沿海的武装抢劫日益猖獗。……沿海各地遭到重大破坏,时称“倭患”。——中国历史七年级下册 (3)根据材料三和所学知识,分析明朝中期出现“倭患”的原因是什么?倭寇猖獗之时,谁临危受命南下抗倭?(4)1684年,为了加强对东南地区的管辖,清政府在台湾设置了什么机构?
19.中国古代一直实行和平开放的对外政策。但是,从明朝中期开始,对外环境发生了变化。阅读下列材料回答问题。材料一 (见下图两个人物) (1)材料一中,谁曾经走过古丝绸之路?材料二 海上丝绸之路把丝绸远销海外,还把中国古代的发明创造,如(四大发明) 、 、 、印刷术、瓷器、医学、中草药等传布到世界各地。——陈炎《海上丝绸之路与中外文化交流》(2)请将材料二中三处画“_______” 的部分在答题卡上补充完整。材料三 明朝中期,随着日本国内社会动荡加剧,特别是由于明朝国力减弱,海防松懈,倭寇与中国海盗奸商等相互勾结,对中国沿海的武装抢劫日益猖獗。……沿海各地遭到重大破坏,时称“倭患”。——中国历史七年级下册 (3)根据材料三和所学知识,分析明朝中期出现“倭患”的原因是什么?倭寇猖獗之时,谁临危受命南下抗倭?
4.加强师风师德建设,增强教师的责任心和使命感。四、下学期工作计划1.加强教学质量的管理力度,进一步扭转教师的教育观念,进一步加强师德师风建设,使教师能“爱岗敬业,教书育人,为人师表”做四有好老师。2.积极联系兄弟学校联考,横向比较了解自身不足,采取针对性措施以期做得更好。3.扎实推进三教改革,加强课程建设,采用多种培训方法,对不同层次的教师进行多元培训,提高整体教师的业务素质,更新教师理念,从“教教材”到“用教材”的转变;以“教师为中心”向以“学生为中心”的转变;从“教育观”到“学习观”的转变;由“传授型”教师向“科研型”教师的转变。4.加强教师队伍建设,有计划地做好青年教师培养工作。继续做好“青蓝工程”师徒结对工作,各位师傅要关爱徒弟,在“备课、听课、上课、作业”等各个环节上把好关,使之能迅速站稳讲台。继续组织好青年教师教学基本功比赛,让青年教师脱颖而出。