2.重点难点: 重点:感知10以内的数,初步认识数字10。 难点:学习数字和图片、圆点进行匹配。 二、过程实录: (一)活动目标: 1.感知10以内的数,初步认识数字10。 2、理解10表示的实际意义,学习数字和图片\圆点进行匹配。 3.大胆参与数学操作及交流活动。 (二)活动准备: 1、每张座位上贴上1-9的数字,每人一张胸卡(有数量不等的小动物) 2、数量为78910的动物卡片若干,大色子一个 (三)活动过程: 1、复习9以内的数量 1)导入:春天来了,我们一起去郊游吧!(幼儿随郊游音乐进场) 2)游戏:找座位,根据胸卡上图片的数量找相应的座位号。 师:我们每人都挂了一个卡片,看,我的卡片上有什么?有几只?那要去找数字几呢?(9只刺猬找9号座位,这就是对号入座)请你看看你的卡片上有几只动物应该找几号座位?
活动准备 1、幼儿用书人手一册,人手一支笔。 2、2005年的挂历。 星期一~星期日的字卡共7章。 活动过程 一、集体活动 1、通过提问引出星期。 师:小朋友,你知道今天是几月几日吗?星期几?(幼儿回答)那你知道一星期有哪几天? 2、教师出示挂历(本年本月),引导幼儿观察,了解挂历内容。 (1)这是什么?上面有什么? (2)告诉幼儿这是今年的挂历,每一张表示一个月,这是几月份的挂历?这个月有几天呢?教师边指日期边带领幼儿念日期1-30。 (3)认识星期。认读汉字星期一到星期日。 (4)幼儿找一找1日在哪?教师用红笔圈起来。并引导幼儿向上看1日是星期几。 (5)请幼儿圈出今天的日期,再说说是星期几?
2发展幼儿观察力和空间思维能力。3通过观察比较在操作活动中认识球体的特征。活动准备:圆圆世界(内有圆圆的会滚动的物体)白纸篮子胶泥表格40份活动过程:(一)导入活动老师带领幼儿复习圆的特征,并请幼儿进入圆圆世界。(二)展开活动1幼儿第一次尝试。
二、活动目标1.初步理解年月日的概念,感知年月日之间的关系;运用不同的数数法探究:一年有12月个月,一个月30(28、31)天,一年有365天。 2.引导幼儿知道有记录时间“年月日”的叫做日历。日历有年类之分,种类之别。 活动重点:运用不同的数数法探究:一年有12月个月,一个月30(28、31)天,一年有365天。 活动难点:大小月分别是哪几个月?顶小月又是哪个月?三、活动准备 1.大字卡“年、月、日、1、4、7、12、31、30、28、365”各一张;自制外形似房子状的2005年1月——12月的月历(大月、小月、2月数房子大小有区分);小字卡(年、月、日)数字卡(12、30、31、28、365)幼儿人手一份。 2.各类挂历、台历、月历、日历。
2、认识整点、半点及的读法及记录方法。3、在活动中诱发幼儿形成遵守时间与爱惜时间的良好习惯。活动准备:1、教具:有关各种时钟的幻灯片;时钟一面,可活动钟面一只;表示7、8、9、10点钟的钟面各一只,时间记录卡各一张。2、学具:幼儿观察记录表每人一份,活动钟面每人一份;实物时钟4只。活动过程:一、调动已有经验,回忆相关知识。1、前段时间我们小朋友和老师一起做了有关时钟的调查,知道时钟有好多好多种。现在请你看看老师从网上下载的钟,看看你认识它吗?2、依次出示幻灯片,幼儿讲名称。3、刚才我们所见到的只是时钟家族的一部分,它可能还有其他的种类,我们以后再来探讨。4、上次我们已经认识过钟面,来告诉大家,最长的针叫(秒针),有点长的针叫(分针),最短的针叫时针。钟面上一共有多少个数字(12),最上面的是数字12,然后依次是1、2……11。请你好好回忆一下,时钟里的指针是朝哪一个方向走的?(1……12)对了,这样的方向就叫顺时针方向。
准备: 教具学具方面:星期转盘操作材料若干套(与幼儿的小组数相同)童话故事《星期妈妈和孩子们》 幼儿知识经验准备:学习另以内的序数和邻数,通过挂历、台历对“星期”时间概念有初步了解。 活动过程: 1、复习巩固:1——7序数,2——6邻数 (1)复习序数:出示1——7数字娃娃(排列无序),请幼儿帮组数字娃娃从小到大的顺序排队,并讲出第一、第二……第七各是哪个数字娃娃,老师出示大写数字表示。 (2)巩固邻数:以“数字娃娃找邻居”的游戏进行。 例如:老师以数字娃娃的口气问,我是2,我的邻居是几和几请小朋友帮助我,帮我找出好邻居。幼儿可回答二、二、二、你的邻居是一和三,一和三是你的好邻居。 2、新授:认识时间“星期”,了解其顺序性、周期性。
2、观察和比较正五边形、正八边形和正十边形,感知其主要特征。 3、培养幼儿观察、辨别的能力。 活动准备: 1、教具准备:挂图“美丽的窗户” 2、学具准备::“多边形”彩色小珠子、彩色笔若干。用彩纸剪成五边形至十边形卡片(做成伞面)。正五边形、正六边形、正八边形和正十边形纸样。 3、《操作册》P45——46页 活动过程: 1、创设情景:小动物们的房屋装修好了,只乘下窗户没有刷上彩色油漆,我们去帮帮他们吧。 2、出示挂图,引导幼儿观察。看看小动物们家里的窗户一样吗,分别是什么形状的?
2、通过情景游戏等活动,让幼儿初步感知图形之间的转换关系,并能想办法解决问题。 3、培养幼儿思维的灵活性,发展幼儿动手能力,激发幼儿学习数学的欲望。活动准备: 1、学会了各种图形的特征。 2、自制的“小路”,上面镂刻大小不同的图形“土坑”,将镂刻下来的图形作成铺路的“石头”。小篮同幼儿人数。 3、圆形、三角形、长方形、正方形的图形标记,音乐。 活动过程: 一、情景导入“捡石头”,激发幼儿活动兴趣。 1、“小朋友,今天的天气真好,我们一起去郊外捡石头!”(随音乐进入活动室) 2、教师提出操作要求:“快看!有那么多五彩缤纷的小石头,大家可以挑自己喜欢的捡。”
(2)知道熊猫是生活在深山竹林里爱吃剑竹的动物。 活动准备: 幼儿去动物园看过大熊猫,与幼儿共同收集熊猫的玩具或照片,熊猫吃竹子的图片一张或录象带一盘。 活动过程:1、引导幼儿观察熊猫的特征和生活习性。 教师:小朋友很喜欢小动物,你们看,谁来了?(出示熊猫玩具) (1)提问:你们喜欢熊猫吗?为什么? (2)提问:熊猫是什么样子的? (3)提问:它生活在哪里?它喜欢吃什么?
(3)在某乒乓球质量检测中,一只乒乓球超出标准质量0.02克,记作+0.02克,那么-0.03克表示什么?解:(1)扣20分,记作-20分;(2)沿顺时针方向转12圈记作-12圈;(3)-0.03克表示乒乓球的质量低于标准质量0.03克。4、让学生回顾现已学过的数,将他们进行分类,最后教师总结。(三)课堂练习,及时反馈为了让更多的学生参与进来,通过练习巩固知识发现不足,教师及时得到反馈,检查教学效果,采取相应措施,我采用了一下习题:(电脑演示)在练习过程中培养学生养成用所学知识去思考问题、判断问题、解决问题的好习惯。学生的练习分出了梯度,让不同学生的学生都有所提高,有助于贯彻因材施教的教学原则。各组练习在进行中,进行后,都要掌握学生的完成情况,让学生举手,加以统计,及时纠错及再讲解。在学生回答问题时,我通过语言、目光、动作给予鼓励与告诉,发挥评价的增益效应。
(四)提高应用已知:在△ABC中,已知∠ACB=90°,CD⊥AB于D,请找出图中的相似三角形,并说明理由。设计意图:训练学生灵活运用知识的能力(五)小结反思1.、相似三角形的判定方法一:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似. 2、在找对应角相等时要十分重视隐含条件,如公共角、对顶角、直角等. 3、掌握由平行线构造的两类相似图形:一类是A字型,另一类是X型. (回顾定理,强调两个基本图形,培养学生养成认真观察,注意寻找图形中的隐含信息的意识) 4、 常用的找对应角的方法:①已知角相等;②已知角度计算得出相等的对应角;③公共角;④对顶角;⑤同角的余(补)角相等.
煤的价格为400元/吨,生产1吨甲产品除需原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.(1)写出m与x的关系式;(2)写出y与x的函数关系式.(不要求写自变量的取值范围)解析:(1)因为矿石的总量一定,当生产的甲产品的数量x变化时,那么乙产品的产量m将随之变化,m和x是动态变化的两个量;(2)题目中的等量关系为总利润y=甲产品的利润+乙产品的利润.解:(1)因为4m+10x=300,所以m=150-5x2.(2)生产1吨甲产品获利为4600-10×200-4×400-400=600(元);生产1吨乙产品获利为5500-4×200-8×400-500=1000(元).所以y=600x+1000m.将m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法总结:根据条件求一次函数的关系式时,要找准题中所给的等量关系,然后求解.
(1)请你用代数式表示水渠的横断面面积;(2)计算当a=3,b=1时,水渠的横断面面积.解析:(1)根据梯形面积=12(上底+下底)×高,即可用含有a、b的代数式表示水渠横断面面积;(2)把a=3、b=1带入到(1)中求出的代数式中,其结果即为水渠的横断面面积.解:(1)∵梯形面积=12(上底+下底)×高,∴水渠的横断面面积为:12(a+b)b(m2);(2)当a=3,b=1时水渠的横断面面积为12(3+1)×1=2(m2).方法总结:解答本题时需搞清下列几个问题:(1)题目中给出的是什么图形?(2)这种图形的面积公式是什么?(3)根据公式求图形的面积需要知道哪几个量?(4)这些量是否已知或能求出?搞清楚了这些问题,求解就水到渠成.三、板书设计教学过程中,应通过活动使学生感知代数式运算在判断和推理上的意义,增强学生学习数学的兴趣,培养学生积极的情感和态度,为进一步学习奠定坚实的基础.
分析:(1)(2)用乘法的交换、结合律;(3)(4)用分配律,4.99写成5-0.01学生板书完成,并说明根据什么?略例3、某校体育器材室共有60个篮球。一天课外活动,有3个班级分别计划借篮球总数的 , 和 。请你算一算,这60个篮球够借吗?如果够了,还多几个篮球?如果不够,还缺几个?解:=60-30-20-15 =-5答:不够借,还缺5个篮球。练习巩固:第41页1、2、7、探究活动 (1)如果2个数的积为负数,那么这2个数中有几个负数?如果3个数的积为负数,那么这3个数中有几个负数?4个数呢?5个数呢?6个数呢?有什么规律? (2)逆用分配律 第42页 5、用简便方法计算(三)课堂小结通过本节课的学习,大家学会了什么?本节课我们探讨了有理数乘法的运算律及其应用.乘法的运算律有:乘法交换律:a×b=b×a;乘法结合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理数的运算中,灵活运用运算律可以简化运算.(四)作业:课本42页作业题
解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法总结:如果按照先算乘法,再算加减,则运算较繁琐,且符号容易出错,但如果逆用乘法对加法的分配律,则可使运算简便.探究点三:有理数乘法的运算律的实际应用甲、乙两地相距480千米,一辆汽车从甲地开往乙地,已经行驶了全程的13,再行驶多少千米就可以到达中点?解析:把两地间的距离看作单位“1”,中点即全程12处,根据题意用乘法分别求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到达中点.方法总结:解答本题的关键是根据题意列出算式,然后根据乘法的分配律进行简便计算.新课程理念要求把学生“学”数学放在教师“教”之前,“导学”是教学的重点.因此,在本节课的教学中,不要直接将结论告诉学生,而是引导学生从大量的实例中寻找解决问题的规律.学生经历积极探索知识的形成过程,最后总结得出有理数乘法的运算律.整个教学过程要让学生积极参与,独立思考和合作探究相结合,教师适当点评,以达到预期的教学效果.
解:由题意得a+b=0,cd=1,|m|=6,m=±6;∴(1)当m=6时,原式=06-1+6=5;(2)当m=-6时,原式=0-6-1+6=5.故a+bm-cd+|m|的值为5.方法总结:解答此题的关键是先根据题意得出a+b=0,cd=1及m=±6,再代入所求代数式进行计算.探究点三:有理数乘法的应用性问题小红家春天粉刷房间,雇用了5个工人,干了3天完成;用了某种涂料150升,费用为4800元,粉刷的面积是150m2.最后结算工钱时,有以下几种方案:方案一:按工算,每个工100元;(1个工人干1天是一个工);方案二:按涂料费用算,涂料费用的30%作为工钱;方案三:按粉刷面积算,每平方米付工钱12元.请你帮小红家出主意,选择哪种方案付钱最合算(最省)?解析:根据有理数的乘法的意义列式计算.解:第一种方案的工钱为100×3×5=1500(元);第二种方案的工钱为4800×30%=1440(元);第三种方案的工钱为150×12=1800(元).答:选择方案二付钱最合算(最省).方法总结:解此题的关键是根据题意列出算式,计算出结果,比较得出最省的付钱方案.
解析:∵ab>0,根据“两数相除,同号得正”可知,a、b同号,又∵a+b<0,∴可以判断a、b均为负数.故选D.方法总结:此题考查了有理数乘法和加法法则,将二者综合考查是考试中常见的题型,此题的侧重点在于考查学生的逻辑推理能力.让学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.教学设计可以采用课本的引例作为探究除法法则的过程.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象.并讲清楚除法的两种运算方法:(1)在除式的项和数字不复杂的情况下直接运用除法法则求解.(2)在多个有理数进行除法运算,或者是乘、除混合运算时应该把除法转化为乘法,然后统一用乘法的运算律解决问题.
方法总结:股票每天的涨跌都是在前一天的基础上进行的,不要理解为每天都是在67元的基础上涨跌.另外熟记运算法则并根据题意准确列出算式也是解题的关键.三、板书设计加法法则(1)同号两数相加,取与加数相同的符号,把绝对 值相加.(2)异号两数相加,取绝对值较大加数的符号,并 用较大的绝对值减去较小的绝对值.(3)互为相反数的两数相加得0.(4)一个数同0相加,仍得这个数.本课时利用情境教学、解决问题等方法进行教学,使学生在情境中提出问题,并寻找解决问题的途径,因此不知不觉地进入学习氛围,把学生从被动学习变为主动想学.在本节教学中,要坚持以学生为主体,教师为主导,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中.
师生共同归纳法则2、异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。生5:这两天的库存量合计增加了2吨。(+3)+(-1)=+2 或(+8)+(-6)=+2师:会不会出现和为零的情况?提示:可以联系仓库进出货的具体情形。生6:如星期一仓库进货5吨,出货5吨,则库存量为零。(+5)+(-5)=0师生共同归纳法则3、互为相反数的两个数相加得零。师:你能用加法法则来解释法则3吗?生7:可用异号两数相加的法则。一般地还有:一个数同零相加,仍得这个数。小结:运算关键:先分类运算步骤:先确定符号,再计算绝对值做一做:(口答)确定下列各题中和的符号,并说明理由:(1)(+3)+(+7);(2)(-10)+(-3);(3)(+6)+(-5);(4)0+(-5).例 计算下列各式:(1)(-3)+(-4);(2)(-2.5)+5;(3)(-2)+0;(4)(+ )+(- )教法:请四位学生板演,让学生批改并说明理由。
解 由题意可得,今年的年产值为a·(1+10%) 亿元,于是明年的年产值为a·(1+10%)·(1+10%)= 1.21a(亿元).若去年的年产值为2亿元,则明年的年产值为1.21a =1.21×2 = 2.42(亿元).答:该企业明年的年产值将能达到1.21a亿元.由去年的年产值是2亿元,可以预计明年的年产值是2.42亿元.例3 当x=-3时,多项式mx3+nx-81的值是10,当x = 3时,求该代数式的值.解 当x=-3时,多项式mx3+nx-81=-27m-3n-81, 此时-27m-3n-81=10, 所以27m+3n=-91.则当x=3,mx3+nx-81 =( 27m+3n )-81=-91-81=-172.注:本题采用了一种重要的数学思想——“整体思想”.即是考虑问题时不是着眼于他的局部特征,而是把注意力和着眼点放在问题的整体结构上,把一些彼此独立,但实质上又相互紧密联系着的量作为整体来处理的思想方法.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。