2、让幼儿在活动中体验合作的乐趣,培养他们解决问题、克服困难的好品质,激发幼儿的团队精神。活动准备:竹筐20个(边筐高25厘米)、4张圆形大小不一的荷叶、纸皮(荷叶)每人一张活动过程:一、准备活动1、 音乐游戏“小青蛙醒来了”。教师与幼儿随着音乐做各种动作,活动身体。2、 幼儿每人选一张“荷叶”,摆在地上,进行跳进跳出动作练习,(教师提醒幼儿注意起跳时先屈膝,落地要轻)
问题二:上述问题中,甲、乙的平均数、中位数、众数相同,但二者的射击成绩存在差异,那么,如何度量这种差异呢?我们可以利用极差进行度量。根据上述数据计算得:甲的极差=10-4=6 乙的极差=9-5=4极差在一定程度上刻画了数据的离散程度。由极差发现甲的成绩波动范围比乙的大。但由于极差只使用了数据中最大、最小两个值的信息,所含的信息量很少。也就是说,极差度量出的差异误差较大。问题三:你还能想出其他刻画数据离散程度的办法吗?我们知道,如果射击的成绩很稳定,那么大多数的射击成绩离平均成绩不会太远;相反,如果射击的成绩波动幅度很大,那么大多数的射击成绩离平均成绩会比较远。因此,我们可以通过这两组射击成绩与它们的平均成绩的“平均距离”来度量成绩的波动幅度。
可以通过下面的步骤计算一组n个数据的第p百分位数:第一步:按从小到大排列原始数据;第二步:计算i=n×p%;第三步:若i不是整数,而大于i的比邻整数位j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第i+1项的平均数。我们在初中学过的中位数,相当于是第50百分位数。在实际应用中,除了中位数外,常用的分位数还有第25百分位数,第75百分位数。这三个分位数把一组由小到大排列后的数据分成四等份,因此称为四分位数。其中第25百分位数也称为第一四分位数或下四分位数等,第75百分位数也称为第三四分位数或上四分位数等。另外,像第1百分位数,第5百分位数,第95百分位数,和第99百分位数在统计中也经常被使用。例2、根据下列样本数据,估计树人中学高一年级女生第25,50,75百分位数。
1.要有充分的直观操作。学生思维的特点一般的是从感性认识开始,然后形成表象,通过一系列的思维活动,上升到理性认识。本课的教学采用直观操作法,是一个重要的环节。2.启发学生独立思考。学生是学习的主体,只有引导学生独立地发现问题、思考问题、解决问题,才能收到事半功倍的教学效果。3.讲练结合。4.充分运用知识的迁移规律,引导学生掌握新知识。教学过程:三、说教学过程:(一)、创设情境上课前,教师先给大家讲一个与今天的学习内容有关的故事,希望同学们认真地听、认真地想。故事是这样的:大象过生日啦!那天来了很多的朋友,有小兔、小猴等等等等,可热闹啦!在众多的朋友中只数小兔最高兴,它乐什么呢?原来它知道了蛋糕的分配方案,认为自己分的蛋糕比小猴的大。蛋糕是这样分配的:分给小兔的蛋糕是棱长10厘米的正方体,分给小猴的蛋糕是棱长1分米的方体。(分别出示两块同样大小的正方体,用10厘米和1分米表示它们的棱长)
五、说教学过程为了高效地实现教学目标,整个教学过程分为如下几个环节进行:环节一:创设情景,导入新课在新课开始时,用多媒体课件以PPT的形式展示几幅含有长方体和正方体的图片。即建筑物,道路和家具。让学生通过观察图片找出其中的长方体。然后,让学生联系到生活中的物体,找出2到3个长方体的实物。并在这些实物的基础上呈现长方体的几何图形。也由此导入新课——长方体的认识,板书课题,长方体的认识。环节二:合作学习,探究新知。在这个环节中,我设计了这样几个活动,来落实教学目标。活动一,“数一数”。把学生分成几个小组,让他们观察手中的长方体纸盒,请他们找出长方体有几个面,再找出面与面之间的线,由此导入棱的概念,通过观察,他们发现每三条棱相交于一点。由此导入顶点的概念,再找出有几个顶点。并在设计的表格中板书。
这道题的设计,一方面培养了学生解决实际问题的能力,另一方面也加深了对圆柱体积计算公式的理解,同时数学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。(五)总结全课,深化教学目标结合板书,引导学生说出本课所学的内容,我们是这样设计的:这节课我们学习了哪些内容?圆柱体积的计算公式是怎样推导出来的?你有什么收获?然后教师归纳,通过本节课的学习,我们懂得了新知识的得来是通过已学的知识来解决的,以后希望同学们多动脑,勤思考,在我们的生活中还有好多问题需要利用所学知识来解决的,望同学们能学会运用,善于用转化的思想来武装自己的头脑,思考问题。
1.教学内容:本节教材是北师大版六年级下册第一单元《圆柱和圆锥》,《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导,学生尝试题、练习、试一试、练一练第一题。2.教材分析本节教材是在学生已经掌握了圆柱体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。3.教学重点:能正确运用圆锥体积计算公式求圆锥的体积。教学难点:理解圆锥体积公式的推导过程。4.教学目标:(1)知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;
4、认识长方体的立体图。师:(出示课件长方体)你最多能看到这个长方体的几个面?你看到了哪三个面?哪三个面看不到?(上面、前面、右面)师:我们把所看到的这个长方体根据透视原理画下来就是这样的。(媒体演示) 这就是长方体的立体图形。师:大家会认了吗?试一试。师小结:以后,我们要判断一个物体是不是长方体,要根据长方体的特征去分析。5、画长方体师:同学们都学得非常认真知道了长方体的特征,那么大家会画长方体吗?画长方体步骤:1、画一个平行四边形。2、画出长方体的高。3、连线。6、 教学长方体的长、宽、高。 (1)、师:同学们刚画出了长方体,那么长方体的长、宽、高有什么特点?师课件展示后,学生汇报。(2)、大家想不想亲手制作一个长方体的框架呢?把你思考的结果和大家分享分享。生汇报。
首先,学生带着如下三个问题自学课文,(电脑出示):(1)用什么方法可以得到计算圆锥体积的公式?(2)圆柱和圆锥等底等高是什么意思?(3)得出了什么结论?圆锥体积的计算公式是什么?其次,学生操作实验,先让学生比较圆柱和圆锥是等底等高。再让学生做在圆锥中装满沙土往等底等高的圆柱中倒和在圆柱中装满沙土往等底等高的圆锥中倒的实验,得出倒三次正好倒满。使学生理解等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的,圆柱的体积是圆锥的3倍。第三、小组讨论,全班交流,归纳,推导出圆锥体积的计算公式:V= Sh。第四、让学生做在小圆锥里装满沙土往大圆柱中倒的实验,得出倒三次不能倒满。再次强调,只有等底等高的圆柱和圆锥才存在着一定的倍数关系。第五、师生小结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。
(二)师生互动,验证猜想活动二:学生自由探索,圆柱体积计算方法以小组为单位设计出一种自己学过的知识计算圆柱体积的方法,通过合作,学生想到的办法可能有:①把橡皮泥捏成圆柱体,再捏成长方体,量出长方体的长、宽、高。算出长方体的体积,也就是圆柱的体积。②把圆柱形的杯子装满沙子,铺平,然后把沙子倒入较大的长方体的盒子中,量出长方体盒子的长、宽及沙子的高,算出沙子的体积,也就是圆柱的体积。如果杯子的厚度忽略不计的话。杯子的容积就是杯子的体积。③把一个圆柱体放到装有(正)长方体容器中,水会上升,上升的水的体积就是圆柱的体积。(这一活动的设计,是通过观察力求让学生体验到我们在计算圆柱的体积时都是把圆柱的体积转化为其他形体的体积来进行计算的。由此,也就可以验证学生的猜想是否准确,但是为了不影响学生的求知欲,我设计了这样一个问题:你能用这些方法来计算我们的学校门口这根圆柱形柱子的体积吗?
小结:分别沿正方形纸的两组对边做出的圆筒一样长、也一样粗,因为正方形的四条边都相等。解决问题。课件出示:你能用几种方法,数出下图中小正方体的个数?方法一:可以从上往下数(或从下往上数)第一层有2个,第二层有4个,第三层有6个,三层共有:2 + 4 + 6 = 12(个);方法二:也可以从左往右数(或从右往左数)。第一排有4个,第二排有6个,第三排有2个,三排共有:4 + 6 + 2 = 12(个);方法三:还可以将最上面一层的2个移到第二层的右侧。这样,这堆木块就变成了两层,每层都有6个,共有6 + 6 = 12(个)。(四)全课总结这节课我们用长方体和正方体拼组了很多不同形状的图形。其实在我们的生活中,有很多物体的形状都是由长方体和正方体拼组而成的,希望同学们课下留心观察。(五)练习数一数,下面的图形由几个正方体组成?
②其他货币与美元挂钩:即各会员国货币对美元的汇率按各自货币的含金量与美元确定固定比价。各国货币与美元的汇率可按各国货币含金量与美元含金量之比来确定,这称为法定汇率。例如,1946年一英镑的含金量为3.58134克,一美元的含金量为0.888671克,则英镑和美元的含金量之比1英镑=4.03美元就是法定汇率。这一规定,使美元等同于黄金,美元从此有了“美金”的说法;与美元比起来,其他国家的货币处于从属地位,确立了美元在国际货币体系中的中心地位、主导地位正如当时美国财政部长福勒所说:“各个行星围绕着太阳转,各国货币围绕着美元转。”小结: “布雷顿森林体系”是一个以美元为中心的世界货币体系,美国通过布雷顿森林体系,掌握了资本主义世界的经济命脉。(2)影响:①为世界货币关系提供了统一的标准和基础,有利于维持战后世界货币体系的正常运转,为世界经济的恢复和发展创造了条件。
一、 学情分析根据新课程的核心理念:课程教学要以学生发展为本,让学生主主动参与是新课程实施的核心。所以我们要了解学生的基本情况。一方面:在高二阶段学生的思维能力从总体上看,正处于急剧发展、变化和成熟的过程中,他们急迫要去了解认识不断变化的社会。另一方面:此阶段的学生知识储备还不够、阅历浅,对于社会历史的发展还停留在感性认识的基础上,还没有上升到理性的高度。因此对其进行本框的教学很有必要。二、 教材分析俗话说,教材是老师的教本,学生的学本。所以正确理解教材,对其进行资源整合很有必要。(一)本框内容结构《社会历史的主体》是人教版新课程标准实验教材高中思想政治教育必修4生活与哲学第四单元《寻觅社会的真谛》第11课第2框的内容,本框题包括两目:人民群众是历史的创造者;群众观点和群众路线。
学生已学习水循环和岩石圈物质循环,对地理环境要素有初步的认识,对物质迁移和能量的交换有一定的了解,已具备基本的地理阅读分析、提取信息的能力。但学生还缺乏综合分析问题解决问题的能力,通过案例来帮助学生对自然地理环境整体性的认识,还需要补充光合作用、分解作用等知识,并进一步培养学生综合分析地理问题的能力。三、说教法案例教学、启发式讲授四、说学法学生原有的地理基础知识不扎实,学习地理方法简单;但学生思维活跃,有强烈的求知欲,所以在学习的过程中,老师应充分利用这一点,调动学生的积极性,激发学生的学习兴趣。学案导学法;合作探究法;案例分析法等,自主学习、合作学习,培养学生的主动学习的能力、团队精神,增强学习效果;体会自然地理环境的整体性和复杂性,将学习目标内化到行动上。
知识和技能 1、理解自然地理环境整体性的基本内涵。2、了解自然地理环境整体性的表现3、使学生树立普遍联系的观点,再利用和改造自然中要充分考虑各地理要素的关系,避免“牵一发而动全身”。过程与方法 1、自主学习,分析 讨论法。2、探究与活动, 理解地理环境的整体性。3、利用景观 图片分析地理环境的整体性。情感、态度与价值观帮助学生树立事物是普遍联系的思想 ,在利用自然中要做到统筹考虑。教学 重点1、地理环境整体性的原因。2、地理要素间相互作用产生新功能。3、自然地理环境的演化过程具有统一性。4、自然地理环境要素会“牵一发而动全身”。教学 难点地理要素间相互作用产生新功能;自然地理环境具有同一演化过 程。教具、资料多媒体课件、景观图片课时安排
1.生产功能:合成有机物的能力2.平衡功能:使自然地理要素的性质保持稳定的能力【教师讲解】生产功能主要依赖于光合作用。在光合作用过程中,植物提供叶绿素,大气提供热量和二氧化碳,土壤及水圈、岩石圈提供水分及无机盐。光合作用通过物质和能量的交换,将生物、大气、水、土壤、岩石等地理要素统一在一起,在一定的条件下,生产出有机物。由此可见,生产功能是自然环境的整体功能而非单个地理要素的功能。大气本身不具有减缓二氧化碳增加的功能,但是,在自然地理环境中,通过各地理要素的相互作用,却能消除部分新增的二氧化碳的能力,既为自然地理环境的平衡功能。请大家阅读教材P94活动,利用平衡功能的原理,解释一定范围内各物种的数量基本恒定这一现象。【学生讨论回答】略。(可参考教参)【转折】自然地理环境各要素每时每刻都在演化,如我们熟知的气候变化、地貌变化等。各个要素的发展演化是统一的,一个要素的演化伴随着其他各个要素的演化。
1.圆柱、圆锥、圆台的表面积与多面体的表面积一样,圆柱、圆锥、圆台的表面积也是围成它的各个面的面积和。利用圆柱、圆锥、圆台的展开图如图,可以得到它们的表面积公式:2.思考1:圆柱、圆锥、圆台的表面积之间有什么关系?你能用圆柱、圆锥、圆台的结构特征来解释这种关系吗?3.练习一圆柱的一个底面积是S,侧面展开图是一个正方体,那么这个圆柱的侧面积是( )A 4πS B 2πS C πS D 4.练习二:如图所示,在边长为4的正三角形ABC中,E,F分别是AB,AC的中点,D为BC的中点,H,G分别是BD,CD的中点,若将正三角形ABC绕AD旋转180°,求阴影部分形成的几何体的表面积.5. 圆柱、圆锥、圆台的体积对于柱体、锥体、台体的体积公式的认识(1)等底、等高的两个柱体的体积相同.(2)等底、等高的圆锥和圆柱的体积之间的关系可以通过实验得出,等底、等高的圆柱的体积是圆锥的体积的3倍.
(2)平均数受数据中的极端值(2个95)影响较大,使平均数在估计总体时可靠性降低,10天的用水量有8天都在平均值以下。故用中位数来估计每天的用水量更合适。1、样本的数字特征:众数、中位数和平均数;2、用样本频率分布直方图估计样本的众数、中位数、平均数。(1)众数规定为频率分布直方图中最高矩形下端的中点;(2)中位数两边的直方图的面积相等;(3)频率分布直方图中每个小矩形的面积与小矩形底边中点的横坐标之积相加,就是样本数据的估值平均数。学生回顾本节课知识点,教师补充。 让学生掌握本节课知识点,并能够灵活运用。
(三)解释、应用和发展问题4:如果测量一座小山的高度,小山脚下还有一条河,怎么办? (教师巡视课堂,友情帮助 ,让学生参照书本99页,用测角仪测量塔高的方法.这个物体的底部不能到达。)(1)请你设计一个测量小山高度的方法:要求写出测量步骤和必须的测量数据(用字母表示),并画出测量平面图形;(2)用你测量的数据(用字母表示),写出计算小山高度的方法。过程: (1) 学生观察、思考、建模、自行解决(3) 学生间讨论交流后,教师展示部分学生的解答过程(重点关注:1.学生能否发现解决问题的途径;学生在引导下,能否借助方程或方程组来解决问题;学生的自学能力.2.关注学生克服困难的勇气和坚强的意志力。3.继续关注学生中出现的典型错误。)(设计意图: 让学生进一步熟悉如何将实际问题转化成数学模型,并能用解直角三角形的知识解决简单的实际问题,发展学生的应用意识和应用能力。
1.经历从不同方向观察物体的活动过程,发展空间观念.2.在观察的过程中,初步体会从不同方向观察同一物体可能看到不同的形状.3.能识别从三个方向看到的简单物体的形状,会画立方体及简单组合体从三个方向看到的形状,并能根据看到的形状描述基本几何体或实物原型.一、情境导入观察图中不同方向拍摄的庐山美景.你能从苏东坡《题西林壁》诗句:“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”体验出其中的意境吗?你能挖掘出其中蕴含的数学道理吗?让我们一起探索新知吧!二、合作探究探究点一:从不同的方向看物体如图所示的几何体是由一些小正方体组合而成的,从上面看到的平面图形是()解析:这个几何体从上面看,共有2行,第一行能看到3个小正方形,第二行能看到2个小正方形.故选D.