方法总结:判断轴对称的条数,仍然是根据定义进行判断,判断轴对称图形的关键是寻找对称轴,注意不要遗漏.探究点二:两个图形成轴对称如图所示,哪一组的右边图形与左边图形成轴对称?解析:根据轴对称的意义,经过翻折,看两个图形能否完全重合,若能重合,则两个图形成轴对称.解:(4)(5)(6).方法总结:动手操作或结合轴对称的概念展开想象,在脑海中尝试完成一个动态的折叠过程,从而得到结论.三、板书设计1.轴对称图形的定义2.对称轴3.两个图形成轴对称这节课充分利用多媒体教学,给学生以直观指导,主动向学生质疑,促使学生思考与发现,形成认识,独立获取知识和技能.另外,借助多媒体教学给学生创设宽松的学习氛围,使学生在学习中始终保持兴奋、愉悦、渴求思索的心理状态,有利于学生主体性的发挥和创新能力的培养
解1:设该多边形边数为n,这个外角为x°则 因为n为整数,所以 必为整数。即: 必为180°的倍数。又因为 ,所以 解2:设该多边形边数为n,这个外角为x。又 为整数, 则该多边形为九边形。第二环节:随堂练习,巩固提高1.七边形的内角和等于______度;一个n边形的内角和为1800°,则n=________。2.多边形的边数每增加一条,那么它的内角和就增加 。3.从多边形的一个顶点可以画7条对角线,则这个n边形的内角和为( )A 1620° B 1800° C 900° D 1440°4.一个多边形的各个内角都等于120°,它是( )边形。5.小华想在2012年的元旦设计一个内角和是2012°的多边形做窗花装饰教室,他的想法( )实现。(填“能”与“不能”)6. 如图4,要测量A、B两点间距离,在O点打桩,取OA的中点 C,OB的中点D,测得CD=30米,则AB=______米.
A.20x-55≥350 B.20x+55≥350C.20x-55≤350 D.20x+55≤350解析:此题中的不等关系:现在已存有55元,计划从现在起以后每个月节省20元.若此学生平板电脑至少需要350元.列出不等式20x+55≥350.故选B.方法总结:用不等式表示数量关系时,要找准题中表示不等关系的两个量,并用代数式表示;正确理解题中的关键词,如负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过、至少、至多等的含义.三、板书设计1.不等式的概念2.列不等式(1)找准题目中不等关系的两个量,并且用代数式表示;(2)正确理解题目中的关键词语的确切含义;(3)用与题意符合的不等号将表示不等关系的两个量的代数式连接起来;(4)要正确理解常见不等式基本语言的含义.本节课通过实际问题引入不等式,并用不等式表示数量关系.要注意常用的关键词的含义:负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过,这些关键词中如果含有“不”“非”等文字,一般应包括“=”,这也是学生容易出错的地方.
【类型二】 根据数轴求不等式的解关于x的不等式x-3<3+a2的解集在数轴上表示如图所示,则a的值是()A.-3 B.-12 C.3 D.12解析:化简不等式,得x<9+a2.由数轴上不等式的解集,得9+a=12,解得a=3,故选C.方法总结:本题考查了在数轴上表示不等式的解集,利用不等式的解集得关于a的方程是解题关键.三、板书设计1.不等式的解和解集2.用数轴表示不等式的解集本节课学习不等式的解和解集,利用数轴表示不等式的解,让学生体会到数形结合的思想的应用,能够直观的理解不等式的解和解集的概念,为接下来的学习打下基础.在课堂教学中,要始终以学生为主体,以引导的方式鼓励学生自己探究未知,提高学生的自我学习能力.
解:设另一个因式为2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一个因式为2x2+x-3.方法总结:因为整式的乘法和分解因式互为逆运算,所以分解因式后的两个因式的乘积一定等于原来的多项式.三、板书设计1.因式分解的概念把一个多项式转化成几个整式的积的形式,这种变形叫做因式分解.2.因式分解与整式乘法的关系因式分解是整式乘法的逆运算.本课是通过对比整式乘法的学习,引导学生探究因式分解和整式乘法的联系,通过对比学习加深对新知识的理解.教学时采用新课探究的形式,鼓励学生参与到课堂教学中,以兴趣带动学习,提高课堂学习效率.
解析:整个阴影部分比较复杂和分散,像此类问题通常使用割补法来计算.连接BD、AC,由正方形的对称性可知,AC与BD必交于点O,正好把左下角的阴影部分分成(Ⅰ)与(Ⅱ)两部分(如图②),把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使整个阴影部分割补成半个正方形.解:如图②,把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使原阴影部分变为如图②的阴影部分,即正方形的一半,故阴影部分面积为12×10×10=50(cm2).方法总结:本题是利用旋转的特征:旋转前、后图形的形状和大小不变,把图形利用割补法补全为一个面积可以计算的规则图形.三、板书设计1.简单的旋转作图2.旋转图形的应用教学过程中,强调学生自主探索和合作交流,经历观察、归纳和动手操作,利用旋转的性质作图.
解析:(1)根据表中信息,用优等品频数m除以抽取的篮球数n即可;(2)根据表中数据,优等品频率为0.94,0.95,0.93,0.94,0.94,稳定在0.94左右,即可估计这批篮球优等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)这批篮球优等品的概率估计值是0.94.三、板书设计1.频率及其稳定性:在大量重复试验的情况下,事件的频率会呈现稳定性,即频率会在一个常数附近摆动.随着试验次数的增加,摆动的幅度有越来越小的趋势.2.用频率估计概率:一般地,在大量重复实验下,随机事件A发生的频率会稳定到某一个常数p,于是,我们用p这个常数表示随机事件A发生的概率,即P(A)=p.教学过程中,学生通过对比频率与概率的区别,体会到两者间的联系,从而运用其解决实际生活中遇到的问题,使学生感受到数学与生活的紧密联系
解析:①以O为圆心,任意长为半径作弧交OA于D,交OB于C;②以O′为圆心,以同样长(OC长)为半径作弧,交O′B′于C′;③以C′为圆心,CD长为半径作弧交前弧于D′;④过D′作射线O′A′,∠A′O′B′为所求.解:如下图所示.【类型三】 利用尺规作角的和或差已知∠AOB,用尺规作图法作∠A′O′B′,使∠A′O′B′=2∠AOB.解析:先作一个角等于∠AOB,再以这个角的一边为边在其外部作一个角等于∠AOB,那么图中最大的角就是所求的角.解:作法:①作∠DO′B′=∠AOB;②在∠DO′B′的外部作∠A′O′D=∠AOB,∠A′O′B′就是所求的角(如下图).三、板书设计1.尺规作图2.用尺规作角本节课学习了有关尺规作图的相关知识,课堂教学内容以学生动手操作为主,在学生动手操作的过程中要鼓励学生大胆动手,培养学生的动手能力和书面语言表达能力
答:所有阴影部分的面积和是5050cm2.方法总结:首先应找出图形中哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、板书设计1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.
探究点三:作中心对称图形如图,网格中有一个四边形和两个三角形.(1)请你画出三个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度能与自身重合?解:(1)如图所示;(2)这个整体图形的对称轴有4条;此图形最少旋转90°能与自身重合.三、板书设计1.中心对称如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.2.中心对称图形把一个图形绕着某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.教学过程中,强调学生自主探索和合作交流,结合图形,多观察,多归纳,体会识别中心对称图形的方法,理解中心对称图形的特征.
5找出下滑音记号 6复唱歌谱 7 教唱歌曲 8分析歌曲 9歌曲结尾重点唱 10跟随伴奏完整唱一遍 11变换演唱方式 12请学生有感情的演唱, 教师及时给予鼓励. (三).知识拓展 1、导言 进入了21世纪不少作曲谱写了很多少年儿童立志歌曲,其中在512汶川大地震英雄少年表彰晚会上会上的创作的歌曲《英雄少年》最为激人奋进 2、聆听《英雄少年》 课堂小结: 通过这节课的学习,希望同学们要像歌里唱的 一样要做勇敢的雄鹰,不畏风雨,勇往直前(四)歌声中结束: 本课的设计,力求体现以人为本的思想,着眼于学生的主动发展,通过充分的音乐实践培养学生的能力,提高音乐素养。多媒体的教学手段,为课堂带来了活力,注入了生机,弥补了教学中单一的教学方法,给了学生以直观的美感享受。
教学内容:统一长度单位教材分析:通过量一量说一说想一想等活动切实感受到统一长度单位的必要性及其对生活的重要意义。学情分析:在上册“比一比”中学了比较物体长短的基础上学习的。尽管学生有这方面的经验和基础,但是长度单位的操作和应用是多种知识的综合,对小孩来说还是比较难的,在教学中应根据学生特点,注重实践性,培养观察力。教学目标:1、让学生通过量一量、说一说的活动,体验统一长度单位的过程,感受统一长度单位的必要性,为厘米、米的学习打下基础。2、让学生用不同实物作标准进行测量,培养学生的动手、思考能力,以及合作、估测的意识。3、通过不同的测量活动,让学生体验测量活动的过程,感受学习与生活的联系,体验学习数学的乐趣。
统计是一种数学思想,也是认识客观事物常用的一种方法。让学生学习统计,要引导他们经历收集、整理数据的过程,精力把整理出来的数据用图表形式表现出来的过程,经历对统计的数据进行分析、判断的过程,从中理解并掌握一些有关统计的基础知识和基本技能,学习解决实际问题。(一)新的课程标准要求我们的数学课程应体现基础性、普及性和发展性。要强调从学生已有的生活经验出发,要使学生学有价值的数学,这些内容要有利于学生主动地进行观察、实验、猜测、验证、理解与交流等数学活动。(二)本课的教学通过学生积极参与数学活动,合作交流,力求体现人人学有价值的数学,体现数学就在我们的身边,与我们的学习生活紧密相联,体会统计的目的和意义,掌握统计的方法,体验数学学习的乐趣。
由于乘法的含义是本节课的重难点,所以我把乘法概念的建立置入学生喜欢的拼图活动之中,并通过实物图,同数相加的算式与乘法算式对照,让学生完成对乘法的初步认识。这样,使概念教学成为学生丰富多彩的学习活动,既有利于学生体会乘法的意义,又可增强学生学习数学的兴趣。在我们的成长过程中,都能体会到,小时候学东西学得快忘得也快。所以,针对小孩子的认知特点,及时地进行反馈练习就是一种帮助学生掌握新知的好方法。因此,我让他们讲黑板上的加法算式改写乘法算式。通过改写,让学生体会不是所有的加法算式都能改写成乘法算式。这样,乘法概念轻轻松松地就被建立在学生的脑海中,又使他们感受到“数学其实就这么简单”,重难点也迎刃而解。教学效果不言而喻,同时学生的个性也得到张扬。
学情分析:本节课的教学内容是长度单位米,。尽管学生有这方面的经验和基础,但是长度单位米的建立还是比较难的,在教学中应根据学生特点,通过实践操作活动建立1米的观念。教学目标:1、使学生认识长度单位米,初步建立1米的长度观念,并学会用米测量物体的长度。知道1米=100厘米。2、培养学生观察能力、动手操作能力、空间想象能力和团结合作意识。教学重点:使学生认识长度单位米,初步建立1米的长度观念。知道1米=100厘米。教学难点:在实际操作过程中用米测量物体的实际长度。教具学具准备:米尺、学生尺、10厘米长的纸条、绳子等教学过程:一、创设情景,引起认知冲突。师:同学们,上节课我们学习了用什么作单位去量物体的长度?(厘米)上节课的内容大家都掌握得不错,谁能用学过的知识帮老师量量黑板的长?
二、说教法1、图文结合法:通过观看插图,欣赏黄山奇石,体会课文中对黄山奇石的赞叹,感悟课文中所蕴含的人文精神,培养学生热爱祖国大好河山的感情。2、自主探究法:通过读课文、课件演示等多种形式,培养学生的观察能力和想象能力,激发学生的好奇心与求知欲,引导学生自主探究学习,感受课文的语言美,积累丰富的词汇。三、说学法1、朗读感悟法。开展多种形式的读,如初读、精读、赏读、个别读等,让学生在读中入情入境,在读中整体感知,在读中培养语感,在读中受到情感的熏陶,使教师、学生、文本三者的情感产生共鸣。 2、情境体验法。根据低年级学生注意力集中时间短,抽象思维弱,形象思维占优势的特点,运用形象、直观的教学手段,突破本课的重点和难点。
全文共有五个自然段,是按照事情发展的顺序记叙的。第一段写的是曹操带着儿子和官员去看人家送给他的一头大象。第二段写的是这头大象又高又大,官员们议论大象的重量。第三段写的是官员们想出了几种称象的办法,曹操听了直摇头。第四段写的是曹冲想出了称象的办法。第五段写的是人们照曹冲说的办法去做,果然称出了大象的重量。在三、四自然段中,通过官员们与曹冲不同的称象方法的对比,揭示了文章的中心,把一个聪颖、质朴的儿童形象展现在读者面前。第四自然段讲曹冲叙述的称象方法和步骤是本课的教学重点。曹冲的称象方法是用四句话说明的。第一至第四句具体地写出了称象的方法,一句话就是一个步骤。文中通过“赶、沉、画、赶、装、沉、称”这几个动词的连用、准确、清楚地写出了称象过程,使学生理解曹冲以船代秤、以石代象的科学的称象方法。用水的浮力来称象的知识,是本课教学中的难点,教师在教学中要努力使文章中抽象的语言文字具体化,以帮助学生理解曹冲称象的具体方法和步骤。
【说教材】《我是什么》是部编版二年级上册第一单元中的一课。本文是一篇拟人的科学短文,以朴实生动的语言,结合谜语的形式,图文并茂地向学生展示了水的变化及其利与害。全文共五段,重点内容可分为三个部分:水的变化、水的形态、水给人类带来的利弊。第二课时的教学重点是在理解课文的基础上,有感情地朗读课文。【说教法】这是一篇集科学性与趣味性于一体的科学小短文。所以在教学中要注意激发学生兴趣,引导其有感情地朗读课文并了解相关科学常识。本节课我主要采用了以下的四种教法:1.体验教学法。通过让学生演示,发挥学生各种感官功能,让学生在动脑、动口、动手中参与训练,激活思维,读懂课文的词句。2.多媒体辅助教学法。这节课,我制作了课件,视听结合,诱发学生的情感,让他们兴趣盎然地参与教学活动。3.鼓励欣赏法。通过点评鼓励学生充分地展示才能,满足他们希望得到赞许、羡慕,体会成功的心理特点,激起学生学习的欲望,增强学习的信心。
一、说教材分析《纸船和风筝》是部编版语文二年级上册的一篇精读课文,这篇课文讲了一个通俗易懂、情趣盎然的童话故事。课文紧扣“纸船和风筝”,层层推进故事的发展,先是松鼠和小熊因纸船和风筝成了好朋友,后来因一点小事而吵架,最后又是纸船和风筝让他们俩和好如初。由于本课是一篇精读课文,因此根据单元主题和本课特点,我设定本课的教学目标为:知识目标:通过阅读故事,了解主要内容:通过师生互动,掌握课文中生字新词的正确读音,及“飘”“漂”的区分。能力目标: 通过品读故事,师生共同进入情景,与故事中的角色同喜同悲,感受友谊的珍贵、失而复得的喜悦。情感目标:通过感受故事中角色的感情,延伸到学生的自身情感,引导学生珍惜朋友间的友情。鉴于以上教材特点和教学目标的设定,我认为本课教学的重难点在于如何抓住关键词句段,让学生感受到文中人物的幸福——悲伤——喜悦,并且让学生随人物的喜而喜,随人物的悲而悲。
《语文课程标准》指出:“语文课程丰富的人文内涵对人们的精神领域的影响是深广的,学生对语文材料的反映往往也是多元的。”启发学生借助教材展开想象,并通过换位思考,体验人物内心,从吸收至倾吐,发展学生的语言,发展学生的思维,从而切实提高学生的认识,指导他们的生活。首先在教学过程中引导学生主动思维,激发学生的情感,从自己的身边去发现,去对比,加强对当时革命状况的了解,从而引发对革命事业崇敬之情。其次在教学的过程中,教师创设这样一个情境,把学生置身于故事所在的背景中,使得学生把自己当作是故事中的一员来参与,参与其中的艰辛,参与其中的心理过程,这样不但有助于教学的开展,而且也可以让学生能够更加的感同身受,激发学生对革命领导人的尊敬与热爱。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。