意图:(1)介绍与勾股定理有关的历史,激发学生的爱国热情;(2)学生加强了对数学史的了解,培养学习数学的兴趣;(3)通过让部分学生搜集材料,展示材料,既让学生得到充分的锻炼,同时也活跃了课堂气氛.效果:学生热情高涨,对勾股定理的历史充满了浓厚的兴趣,同时也为中国古代数学的成就感到自豪.也有同学提出:当代中国数学成就不够强,还应发奋努力.有同学能意识这一点,这让我喜出望外.第六环节: 回顾反思 提炼升华内容:教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.目的:(1)归纳出本节课的知识要点,数形结合的思想方法;(2)教师了解学生对本节课的感受并进行总结;(3)培养学生的归纳概括能力.效果:由于这节课自始至终都注意了调动学生学习的积极性,所以学生谈的收获很多,包括利用拼图验证勾股定理中蕴含的数形结合思想,学生对勾股定理的历史的感悟及对勾股定理应用的认识等等.
探究点二:勾股定理的简单运用如图,高速公路的同侧有A,B两个村庄,它们到高速公路所在直线MN的距离分别为AA1=2km,BB1=4km,A1B1=8km.现要在高速公路上A1、B1之间设一个出口P,使A,B两个村庄到P的距离之和最短,求这个最短距离和.解析:运用“两点之间线段最短”先确定出P点在A1B1上的位置,再利用勾股定理求出AP+BP的长.解:作点B关于MN的对称点B′,连接AB′,交A1B1于P点,连BP.则AP+BP=AP+PB′=AB′,易知P点即为到点A,B距离之和最短的点.过点A作AE⊥BB′于点E,则AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B两村庄的最短距离和是10km.方法总结:解这类题的关键在于运用几何知识正确找到符合条件的P点的位置,会构造Rt△AB′E.三、板书设计勾股定理验证拼图法面积法简单应用通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,学会勾股定理的应用并逐步培养学生应用数学解决实际问题的能力,为后面的学习打下基础.
方法总结:利用三角形三边的数量关系来判定直角三角形,从而推出两线的垂直关系.探究点二:勾股数下列几组数中是勾股数的是________(填序号).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①组不符合勾股数的定义,不是勾股数;第③④组不是正整数,不是勾股数;只有第②组的9,40,41是勾股数.故填②.方法总结:判断勾股数的方法:必须满足两个条件:一要符合等式a2+b2=c2;二要都是正整数.三、板书设计勾股定理的逆定理: 如果一个三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.勾股数:满足a2+b2=c2的三个正整数,称为勾股数.经历一般规律的探索过程,发展学生的抽象思维能力、归纳能力.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.
解:设甲班的人数为x人,乙班的人数为y人,根据题意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人数为48人,乙班的人数为45人.方法总结:设未知数时,一般是求什么,设什么,并且所列方程的个数与未知数的个数相等.解这类问题的应用题,要抓住题中反映数量关系的关键字:和、差、倍、几分之几、比、大、小、多、少、增加、减少等,明确各种反映数量关系的关键字的含义.三、板书设计列方程组,解决问题)一般步骤:审、设、列、解、验、答关键:找等量关系通过“鸡兔同笼”,把同学们带入古代的数学问题情景,学生体会到数学中的“趣”;进一步强调数学与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神;进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.
由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P(两次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次 白1 白2 红白1 (白1,白1) (白2,白1) (红,白1)白2 (白1,白2) (白2,白2) (红,白2)红 (白1,红) (白2,红) (红,红)由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P(两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率画树状图法列表法通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.
合探2 与同伴合作,两个人分别画△ABC和△A′B′ C′,使得∠A和∠A′都等于∠α,∠B和∠B′都等于∠β,此时,∠C与∠C′相等吗?三边的比 相等吗?这样的两个三角形相似吗?改变∠α,∠β的大小,再试一试.四、导入定理判定 定理1:两角分别相等的两个三角形相似.这个定理的 出 现为判定两三角形相似增加了一条新的途径.例:如图,D ,E分别是△ABC的边AB,AC上的点,DE∥BC,AB= 7,AD=5,DE=10,求B C的长。解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC(两角分别相等的两 个三角形相似).∴ ADAB=DEBC.∴BC=AB×DEAD = 7×105=14.五、学生练习:1. 讨论随堂练 习第1题有一个锐角相等的两个直角三角形是否相似?为什么?2.自己独立完成随堂练习第2题六、小结本节主要学习了相似三角形的定义及相似三角形的判定定理1,一定要掌握好这个定理.七、作业:
(一)导入新课三角形全等的判定中AA S 和ASA对应于相似三 角形的判定的判定定理1,SAS对应于相似三 角形的判定的判定定理2,那么SSS 对应的三角形相似的判定命题是否正确,这就是本节研究的内容.(板书)(二) 做一做画△ABC与△A′B′C′,使 、 和 都等 于给定的值k.(1)设法比较∠A与∠A′的大小;(2)△ABC与△A′B′C′相似吗?说说你的理由.改变k值的大小,再试一试.定理3:三边:成比例的两个三 角形相似.(三)例题学习例:如图,在△ABC和△ADE中,ABAD=BCDE=ACAE ,∠BAD=20°,求∠CAE的度数.解:∵ABAD=BCDE=ACAE ,∴△ABC∽△ADE(三边成比例的两个三角形相似). ∴∠BAC=∠DAE,∴∠BAC-∠DAC =∠D AE-∠DAC,即∠BAD=∠CAE.∵∠BAD=20°,∴∠CAE=20°. 三、巩固练习四、小结本节学 习了相似三角形的判定定理3,使用时一定要注意它使用的条件.
证明:如图,过点C作CF∥PD交AB于点F,则BPCP=BDDF,ADDF=AECE.∵AD=AE,∴DF=CE,∴BPCP=BDCE.方法总结:证明四条线段成比例时,如果图形中有平行线,则可以直接应用平行线分线段成比例的基本事实以及推论得到相关比例式.如果图中没有平行线,则需构造辅助线创造平行条件,再应用平行线分线段成比例的基本事实及其推论得到相关比例式.三、板书设计平行线分线段成比例基本事实:两条直线被一组平行线所截, 所得的对应线段成比例推论:平行于三角形一边的直线与其他 两边相交,截得的对应线段成比例通过教学,培养学生的观察、分析、概括能力,了解特殊与一般的辩证关系.再次锻炼类比的数学思想,能把一个复杂的图形分成几个基本图形,通过应用锻炼识图能力和推理论证能力.在探索过程中,积累数学活动的经验,体验探索结论的方法和过程,发展学生的合情推理能力和有条理的说理表达能力.
解:设需要剪去的小正方形边长为xcm,则纸盒底面的长方形的长为(19-2x)cm,宽为(15-2x)cm.根据题意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法总结:列方程最重要的是审题,只有理解题意,才能恰当地设出未知数,准确地找出已知量和未知量之间的等量关系,正确地列出方程.在列出方程后,还应根据实际需求,注明自变量的取值范围.三、板书设计一元二次方程概念:只含有一个未知数x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c为常数,a≠0)的形式一般形式:ax2+bx+c=0(a,b,c为常 数,a≠0),其中ax2,bx,c 分别称为二次项、一次项和 常数项,a,b分别称为二次 项系数和一次项系数本课通过丰富的实例,让学生观察、归纳出一元二次方程的有关概念,并从中体会方程的模型思想.通过本节课的学习,应该让学生进一步体会一元二次方程也是刻画现实世界的一个有效数学模型,初步培养学生的数学来源于实践又反过来作用于实践的辩证唯物主义观点,激发学生学习数学的兴趣.
由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P(两次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P(两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率画树状图法列表法通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.
大班幼儿形象思维方式发展已经相当好,逻辑思维也有了一定的发展,这一阶段既是做好幼小衔接的重要阶段,也是幼儿形成正确的学习方法和良好的学习习惯的关键时期。根据数学《3-6岁儿童学习与发展指南新课标》的要求,结合幼儿的认知规律,本次活动我采用了以下三种方法:1、谈话教学法:科学合理设计问题,引导幼儿积极探索、思考。2、演示教学法:利用PPT进行情境演示,让幼儿更直观的去理解9的加法。3、游戏教学法:幼儿活动以游戏为主,让幼儿感受数学的乐趣,喜欢数学活动,感知数学与生活的联系。
本节课共分为五大环节来进行教学的1、猜拳幼儿,激趣导入针对大班孩子纯真幼稚、富于幻想的心理特征,因此上课一开始进行复习时,我设计了如下导语:小朋友们,智慧爷爷给你们带礼物啦,表现好的都能得到,让我们先来做一个猜拳游戏吧!点出复习题,在这种刺激下,人人都想当老师眼中的小能手,兴趣一下就调动起来。2、创设情境,探究新知在新课学习中,通过孩子们所喜欢的卡通动物形象-----小兔姐姐,以小兔姐姐邀请小朋友去郊游这一情境贯穿全课,从而激发幼儿学习新知的欲望。通过郊外苹果树上的苹果,引导幼儿感知,探索1+7=87+1=8,并发现数量关系,理解算式的意义,然后出示小鸭图,让幼儿提出数学问题,并列出算式2+6=86+2=83、观察算式,发现加法交换律作为幼儿学习活动的组织者、合作者和引导者,我让幼儿通过小组讨论的形式来发现算式的相同和不同之处,与幼儿一同归纳出:加号两边的数交换位置,得数不变。
(二)教材分析《分数和小数的互化》是在学生学习了分数的意义分数与除法的关系和分数的基本性质的基础上教学的。学习这部分内容是为以后学习分数和小数的混合运算打下基础。例1是教学小数化分数。教材突出“先把小数化成分母为10、100、1000……的分数再写成最简分数”这一转化过程。例2时教学6个数的大小比较,从中学习如何把分数化小数,教材按照已掌握的分数与除法的关系和分数的基本性质,提出问题引导学生想出多种方法把分数化成小数。本节课的内容,体现了数学知识的内在联系,学生通过学习这部分知识,将为今后学习分数与小数的混合运算打下良好的基础。(三)教学目标1.知识目标:是学生理解并掌握分数和小数、小数和分数互化的方法,能正确地进行分数与小数、小数与分数之间的互化。2.能力目标:培养学生的观察、归纳和概括能力。3.情感目标:体验合作学习的快乐,感受数学在生活中的应用价值,渗透“事物之间互相联系、互相转化”的辩证唯物主义思想。
一、说教学内容义务教育课程标准实验教科书一年级下册《两位数减一位数退位减法》被安排在人教版一年级下册第六单元“100以内的加法和减法”里,属于“数与代数”领域的内容。二、说教学目标1、知识目标(1)掌握两位数减一位数退位减的计算方法。(2)经历探索两位数减一位数退位减法计算方法的过程,从而理解退位减法的算理。2、能力目标(1)能正确进行退位减法的计算,并用自己喜欢的方法进行正确计算。(2)能够解决相应的实际问题。(3)培养学生的计算能力和动手操作能力。3、情感目标(1)感受退位减法与实际生活的紧密联系。(2)体会退位减法在生活中的作用。4、教学重点掌握两位数减一位数的退位减法的计算方法,并能熟练准确地进行口算。 5、教学难点:结合小棒操作说出不同的计算方法,并准确地口算。
一、说教材《打电话》是课标教材中全新的“实践与综合应用”领域的一个知识点,是第二学段的12个“综合应用”的知识之一。教材通过学生生活中熟悉的素材:合唱队在假期接到一个紧急任务,老师要打电话尽快通知到每个队员,让学生帮助设计一个打电话方案,并从中寻找最优的方案。学生在解决问题的过程中进一步体会数学与生活的密切联系,以及优化思想在生活中的应用,培养学生应用数学知识解实际问题的能力。基于以上认识,结合本班学生的实际,我确定以下教学目标:1、[知识与技能]:通过动手操作、画图、模拟等方式,发现事物隐含的规律,体验优化的思想;2、[过程与方法]:使学生亲身经历寻找最优方案的全过程,经历独立思考和合作探究的学习方式; 3、[情感、态度与价值观]:初步体会运筹思想在实际生活中的应用以及对策论方法在解决问题中的应用,培养学生归纳推理的能力。
四、说教法为了更好地突出本节课的重点和难点,我采用了以下教法:1、讨论法。通过学生的讨论让他们自己总结归纳出通分的意义和方法。2、借助直观的演示进行教学,帮助学生理解通分的算理,培养了学生的观察、分析能力。3、运用口答、多媒体课件等形式的练习,使学生巩固了所学的知识,使教学得到反馈。 4、循循善诱,启发引导学生,鼓励学生积极发言,引导学生动口、动脑、动手,逐步掌握新知。五、说学法通过本节课的学习,使学生学会联系旧知识解决新问题,通过对操作演示的观察、分析,自己总结归纳出通分的意义和方法,体现了学生的自主。六、说教学过程(一)再现导入通分是在求几个数的最小公倍数和分数的基本性质的基础上学习的,因此,在新授前我利用多媒体课件,先安排了求两个数的最小公倍数和分数的基本性质、比较分数的大小的复习。复习第(1)题让学生回忆了两个数是互质关系、倍数关系和一般关系时怎样求它们的最小公倍数;复习第(2)题让学生回顾分数的基本性质,为通分过程打好基础。这两题都分散了教学中的难点。
[教材分析]本课时是《克和千克》这一单元的第一节课,主要介绍一些普通生活用品的重量认识质量单位克和千克,培养学生用数学观点发现克和千克两个质量单位,为进一步学习有关克和千克之间的联系做好准备。[学情分析]对于活泼好动的二年级孩子来说,物体的重量他们有一定的生活体验,同时,二年级学生形象思维能力较强,可以利用他们对身边物体质量来认识克和千克。有了以上的认识,我将本节课的教学目标拟定为:[目标定位]1、知识目标:让学生在生动活泼的情境中初步认识克和千克,建立克和千克的观念,知道1000克=1千克2、能力目标:培养学生初步的观察、操作能力,让学生学会看秤培养动手能力。3、情感目标:培养学生自主探索的精神和增强生活意识。教学重难点:通过活动正确认识克和千克的关系,知道1克和1千克的关系,难点建立克和千克的意识。
一、说教材《约分》是人教版小学数学五下第四单元的教学内容,在学习约分前,学生已经探索了分数的基本性质,学习了求最大公因数的方法,这些知识的掌握都为约分方法的学习提供了认知基础。教材通过例4,教学约分的一般方法。同时在学生会求两数最大公因数的基础上,启发他们思考,有没有更简便的方法?并介绍了约分时的常用书写形式。二、谈学情这一课的学习对象是五年级的学生,他们一方面具有小学生的特点:对新鲜事物很感兴趣,以形象思维为主,有强烈的表现欲望、好胜心,但是部分学生还不能快速找出两个数的公因数、最大公因数以及快速判断两个数是否互质。 二、说教学目标基于对教材和学情的分析,我们确定了以下教学目标:1.知识目标:理解和掌握约分的意义和方法,掌握最简分数的概念2.能力目标:熟练进行约分,培养灵活运用所学知识解决实际问题的能力。 3.情感目标:引导探索知识间的内在联系,培养学生观察、比较、分析的能力和良好的数学学习习惯。
活动目的:(1)通过小组讨论活动,让学生理解坐标系的特点,并能应用特点解决问题。(2)培养学生逆向思维的习惯。(3)在小组讨论中培养学生勇于探索,团结协作的精神。第四环节:练习随堂练习 (体现建立直角坐标系的多样性)(补充)某地为了发展城市群,在现有的四个中小城市A,B,C,D附近新建机场E,试建立适当的直角坐标系,并写出各点的坐标。第五环节:小结内容:小结本节课自己的收获和进步,从知识和能力上两个方面总结,老师予于肯定和鼓励。目的:鼓励学生大胆发言,敢于表达自己的观点,同时学生之间可以相互学习,共同提高,老师给予肯定和鼓励,激发学生的学习热情。第六环节:布置作业A类:课本习题5.5。B类:完成A类同时,补充:(1)已知点A到x轴、y轴的距离均为4,求A点坐标;(2)已知x轴上一点A(3,0),B(3,b),且AB=5,求b的值。
探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.