切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
一、主要工作开展情况公司D委聚力在组织谋划、宣传发动、理论学习上先学先行,在摸清问题、调查研究、检视整改上先破后立,以五个“先一步”推动ZT教育“第一步”走得实、走得稳,实现良好开局。一是坚持先谋一步,确保组织领导到位。按照xx集团D委学习贯彻新时代中国特色社会主义思想ZT教育工作会议精神和ZT教育实施方案等相关要求,公司D委提前谋划、精心组织,牢牢把准集团D委部署要求,第一时间研究制订《中共xx有限公司委员会学习贯彻新时代中国特色社会主义思想ZT教育工作方案》,明确重点抓好理论学习、调查研究、推动发展、检视整改、建章立制等5项重点任务。方案注重整合D建、安全、经营、发展等核心部门力量,突出“五个一”特点,体现抓好学习这一主线,用好调研这一抓手,聚焦发展这一中心,突出问题这一导向,深化制度这一目标。
最后,也借这个机会,向大家三点工作的要求:1.要始终秉持教学第一位的本位意识思政教育、专业教育、XX教育、知行教育、实践教育、工程教育,这些所有的模块构成了我们学校人才培养体系,大家要始终秉持教学本位的理念,深刻研判国家、社会、学校人才培养的新形势和新要求,不断探索前沿高等教育先进的教学理念和教学方法,持续推进我校教育体系的完善与创新。2.XX教育应加强团队协作XX教育建设并非闭门造车,我们在新工科新文科协同发展理念引导下,大力扶持文理渗透、理工交融的学科交叉融合,整合校内多学科资源,建立开放、共享、交叉、融合的XX教育课程体系,这已成为我们学校XX教育建设导向,所以更需要大家加强团队协作,体现产教融合科教融汇、有组织科研有组织教研的一些集中成果。3.认真践行课堂革命教学改革
一、教师对教育科研的认识大部分教师认为参与教育科研的目的是为了解决教学中的实际问题,教育科研对教学有促进作用。事实说明大部分教师想的更多的是如何更有效地将教育科研的成果运用并物化为教育质量的提高,同时也希望通过教育科学研究的实践发展与完善自我。反思我们师训工作,虽然初衷与教师们这种想法一致,即提高教师的科研能力与水平。但在实际操作中时常会有不和谐的声音,如片面追求发表文章的数量,过于注重文章内容的所谓“新潮”,热衷于设置各种奖项,奖状越做越精美,奖面也越来越宽。
一、教师对教育科研的认识大部分教师认为参与教育科研的目的是为了解决教学中的实际问题,教育科研对教学有促进作用。事实说明大部分教师想的更多的是如何更有效地将教育科研的成果运用并物化为教育质量的提高,同时也希望通过教育科学研究的实践发展与完善自我。反思我们师训工作,虽然初衷与教师们这种想法一致,即提高教师的科研能力与水平。但在实际操作中时常会有不和谐的声音,如片面追求发表文章的数量,过于注重文章内容的所谓“新潮”,热衷于设置各种奖项,奖状越做越精美,奖面也越来越宽。
1. 监管力度不一,学习效率参差。 线上学习,有部分家长很重视,为孩子提供了安静的学习环境,部分学生也很自律,能按时听课、积极思考、完成各项课内课外练习。但不排除存在家长无条件提供好的学习环境,学生缺乏自控能力的现象。我校生源一大部分是新居民子女,线上教学的中后期,学生家长绝大部分外出务工,学生的学习几乎处于“放任自流”的状态。孩子缺少大人的监督,不自觉更体现无疑,上课不专心,不记笔记,甚至不上课的也都存在,更别说语文的口头朗读、背诵作业和笔头的听写作业等的落实了。学生上课的参与率不保障,学校效率也参差不齐,两级分化明显。
1、能听读辨认语音,培养学生听说能力。 2、能按四会要求掌握所学的词汇,句型,掌握语言材料。 3、能按要求会读,会说,听懂,会写日常交际用语,提高学生语言运用能力。 4、能进一步感知理解语法,掌握初步的语法知识。
一、贯彻两个文件,实施一项制度: 新学年重点贯彻落实安徽省教育厅教基[20xx]8号文件《关于全面推进农远工程应用与管理工作的意见》、安徽省歙县教育局教电〔20xx〕13号文件《关于印发〈歙县贯彻“关于全面推进农远工程应用与管理工作的意见”实施意见〉的通知》精神,突出“农远”设备的管理、增配、使用,确保设备的正常运行,发挥设备的教学效益。努力实施《安徽省中小学校现代教育装备制度》,根据《安徽省中小学校现代教育装备制度》要求,结合我校实际,修改、补充、完善原订的相关制度,重点是管理、应用、培训、考核等制度。使远程教育体现出规范化、制度化、效益化。
1、继续抓好常规教研,每次教研要有计划、有主题、有目标,谈到的问题要解决,讨论要有结果,从而使活动效果最大化。 2、以新课标测试的形促进老师们新课标理论学习,讨论对新课标的理解和运用程度,不断讨论和摸索在课堂教学中如何更大程度地渗透新课标的理念。 3、聚焦课堂,加强教学展示和相互学习。继续开展研究课、汇报课、展示课等活动,突出新课标理念、以创设情景,主动参与的课堂教学设计为研究重点,进行“研、讲、评、议”一条龙教研活动,充分体现集体智慧,集思广益,提高教师的授课质量,提高课堂效率,严把“有效教学”关,打造高效课堂。
1、强化德育队伍建设。不断增强教职工德育意识,努力提高德育理论水平和德育技能,以班主任、生活教官队伍为龙头,健全班委会、学生会、团支部队伍,积极推行课任老师德育工作学科浸透,以各类德育活动为载体,全面张开德育工作。 2、提高学生道德评价水平。学生中的犯错误现象比较普遍、犯错误后又不愿接受教育,其根本原因是在于学生心目中的是非观、善恶观、美丑观不准确。因此本学期德育工作之首便是着眼于逐步形成准确的道德评价标准。通过讲座、演讲、征文、辩论会、典型引路等各种方式提升学生道德认知水准,树立健康向上的世界观、人生观,这是学生改正错误、加快进步的源动力、内驱力。
1、八年级地理上册(湘教版)教材内容是中国地理为主,分为中国的疆域、中国的自然环境、中国的自然资源和中国的区域差异四大部分。八年级地理上册表现出对各种能力的培养,教材更多篇幅的图片和活动的训练。我国地域辽阔,资源丰富,但存在巨大的地域差异,这就需要在教学上处理好整体与差异的关系。 例如:我国的疆域面积居世界第三,但东西和南北都跨度很大,带来了冬季气候上的南北差异也带来了东西的时间差异。
在教学工作方面,整学期的教学任务都非常重。但不管怎样,为了把自己的教学水平提高,我坚持经常翻阅《小学语文教学》、《优秀论文集》、《青年教师优秀教案选》等书籍。还争取机会多出外听课,从中别人的长处,领悟其中的教学艺术。
一、安全问题安全问题是一切工作的前提与根本,没有安全,一切等于零。在我的工作中,安全分为三个方面:1、人身安全。通过不断地讲解、案例分析、防范措施的执行,信息机构的建立与运行等,首先保证人身安全不受伤害,其实保证对于班级情况的掌控与了解,信息反馈的顺畅。2、心理安全。主动与系部分管心理健康工作的辅导员联系,通过大规模心理调查,建立新生心理档案,收集各种相关信息,随时了解实际情况并决定是否采取措施。每个人都需要心理档案齐全,掌握进程,及时进行心理咨询,保证心理健康,进而保证全部的安全。3、宿舍安全。积极配合学院后勤保障部,争取每周至少两次深入寝室了解学生情况。这样,不仅及时了解学生的生活状况与宿舍卫生情况,更能加深与学生之间的感情,同时对宿舍进行安全隐患排查。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。