(二)探究新知 1. 探究圆锥的体积的计算方法,学习例2。师:圆锥的体积和圆柱的体积有没有关系呢?圆柱的底面是圆,圆锥的底面也是圆……通过实验探究一下圆锥和圆柱体积之间的关系。小组合作探索:(1)各组准备好等底、等高的圆柱、圆锥形容器。(2)用倒沙子或水的方法试一试。(3)圆锥的体积与同它等底等 高的圆柱体积之间有什么关系?(4)小组活动,师巡视指导。2.推导圆锥体积的计算方法。 (1)课件演示等底等高的圆柱和圆锥
(一)复习导入 1. 师:同学们,上节课我们学习了折扣,你会做下面的题吗?(课件第2张)(1)五五折表示十分之(五点五),也就是(55)%。 (2)一件商品打九八折出售,就是按原价的(98%)出售。(3)一件上衣原价75元,现在打八折售出,现在买这件上衣需要(60)元。(4)现价=(原价)×(折扣)2.师:生活中的百分数还有很多,比如说“成数”。例如:今年我省油菜籽比去年增产二成。这节课我们就来学习“成数”。(板书课题:成数)(课件第3张)【设计意图】 “折扣”与“成数”虽然运用不一样,但解决方法大致相同,复习不仅可以起到巩固作用,也能让学生对新知的解决有一些铺垫。(二)探究新知 1、探究成数的含义以及成数和百分数的关系。(课件第4张)(1)农业收成,经常用成数来表示。你知道什么是成数吗? 生1:成数表示一个数是另一个数的十分之几,通称“几成”。“一成”就是十分之一,改写成百分数是10%。(2)填一填。(课件第5张)“二成”就是(十分之二),改写成百分数是(20%);“三成五”就是(十分之三点五),改写成百分数是(35%)。“四成三”就是(十分之四点三),改写成百分数是(43%);“六成五”就是(十分之六点五),改写成百分数是(65%)。(3)把下面的成数改写成百分数。 (课件第6张)三成=(30)% 四成六=(46)% 九成九=(99)% 二成五=(25)% 一成二=(12)% 七成三=(73)%
(一)观图激趣、设疑导入 师:上一节我们已经认识了比例,知道两个比怎样才能组成比例,下面请同学们判断一下下面各组的比能否组成比例。(1)0.4∶和1.2∶2 (2)和生1:根据比例的意义,第(1)题,这两个比的比值相等,都是0.6,所以(1)题的两个比能组成比例。生2:我来回答第(2)题,我也利用比例的意义,求出=5,=6,这两个比的比值不相等,所以第(2)题的两个比不能组成比例。师:这两名同学回答的真好,有理有据,让我们为他们的表现鼓掌!师:今天这节课,我们将共同来学习用另一种方法来判断两个比能否组成比例,同学们想知道是什么方法吗?生:想知道。师:那就是比例的基本性质(板书课题:比例的基本性质)。【设计意图】复习学生已有的知识,唤醒学生已有学习经验,教师的提问吸引了学生的注意力,也引发学生的好奇心,为学习新知识开了一个好头。
【教学过程】(一)观图激趣、设疑导入 出示课件的第一张幻灯片。1、成正比例的量有什么特征?2、正比例关系式。生1:两种相关联的量,一种量变化,另一种量也随着变化。生2:两种量中相对应的两个量的比值(商)一定。生3:=k(一定)。师:同学们非常棒!我们今天继续学习两种量的另外一种关系。 (板书:成反比例的量)【设计意图】这种方法的导入,简简单单的一道练习题,把学生的注意力吸引到本节主要内容上来,激起学生的好奇心,真的还有另外一种关系!我可得好好听一听。这样在学习反比例时学生会始终保持高度的精神集中,有利于教师教学顺利进行。(二)探究新知教学例2,探究反比例的意义,理解成反比例的量。1、出示PPT课件回答问题。杯子的底面积与水的高度的变化情况如下表。 杯子的底面积/cm²1015203060…水的高度/cm302015105…观察上表,回答下面的问题。(1)表中有哪两种量?(2)水的高度是怎样随着杯子底面积的大小变化而变化的?(3)相对应的杯子的底面积与水的高度的乘积分别是多少?生1:表中有杯子的底面积和水的高度这两种量。生2:从表中可以看出:水的高度随着杯子的底面积的变大而不断变小,这两种量是相关联的两种量。生3:我来回答(3),相对应的杯子的底面积与水的高度的乘积分别是:10×30=15×20=20×15=30×10=60×5=…=300。生4:乘积一定。师:底面积与高的乘积表示的是什么?生:水的体积。(板书)师:你会算出水的体积吗?生:会。(学生计算,教师出示课件订正)2、揭示反比例的意义。师:积是300,实际就是倒入杯子的水的体积。同学们能用式子表示出它们的关系吗?生:它们的关系是:底面积×高=体积。师:同学们,我们用概括正比例意义时的方法来概括一下反比例的意义吧!生:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。(板书反比例的意义)3、用字母表示反比例关系:xy=k(一定)。(板书)4、牛刀小试。锅炉房烧煤的天数与每天烧煤的吨数如下表: 每天烧煤的吨数/吨11.522.53烧煤的天数/天3020151210(1)表中有哪两种量?它们是不是相关联的量?(2)写出几组这两种量中相对应的两个数的积,并比较大小,说一说这个积表示什么。(3)烧煤的天数与每天烧煤的吨数成反比例吗?为什么?【参考答案】 (1)每天烧煤的吨数和烧煤的天数,是相关联的量。 (2)1×30=30 1.5×20=30 2×15=30 2.5×12=30 3×10=30 积相等,这个积表示这批煤的总吨数。 (3)成反比例,因为烧煤的天数与每天烧煤的吨数的积一定。【设计意图】学生通过观察、发现、概括经历了整个学习过程,逐步形成定向思维方式,为学会学习打好基础。
(一)复习导入 1. 师:同学们,你们去过这些景区吗?(课件第2张)鸟巢、水立方、市容卫生、绿化建设、城市规划建设、航天事业的发展。 2.师:我国的经济建设日新月异,人民生活的不断提高,基础建设全面展开。你知道这些设施的费用是从哪儿来的吗?生:这些设施的费用都是政府投资的,是国家出钱建设的。师:国家的钱又是从哪儿来的?生:国家的财源主要来自税收。3.导出纳税、税率。(课件第3张)生1:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。生2:税收是国家收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防等事业。生3:每个公民都有依法纳税的义务哦!这节课我们就来学习有关税收的知识。板书课题:税率【设计意图】 联系学生的生活实际,使学生知道每个公民都有依法纳税的义务,增强学生的纳税意识。(二)探究新知 1、探究税率的含义。(课件第4张)(1)你知道哪些纳税项目?应该怎样缴纳税款呢?生1:税收主要分为消费税、增值税、营业税和个人所得税等几类。生2:缴纳的税款叫做应纳税额,应纳税额与各种收入(销售额、营业额……)的比率叫做税率。2、探索应纳税额的计算。(课件第5张)(1)有一家饭店10月份的营业额是30万元,如果按营业额的5%缴纳营业税,这家饭店10月份应缴纳营业税多少万元?(2)小组讨论:你是怎样想的?说说你的思考过程。(3)汇报交流:(课件第6张)生1:缴纳的营业税是营业额的5%。生2:求营业额的5%是多少,用乘法计算。生3:30×5%=1.5(万元)答:这家饭店10月份应缴纳营业税1.5万元。3、做一做。(课件第7张)(1)李阿姨的月工资是5000元,扣除3500元个税免征额后的部分需要按3%的税率缴纳个人所得税。她应缴个人所得税多少元?小组合作:你会做吗?说说你的想法。汇报交流:(课件第8张)生1:“扣除3500元个税免征额后的部分”这句话是什么意思?生2:要从工资总数里减去3500元,剩下的钱按3%的税率缴税。生3:(5000-3500)×3%=1500×0.03=45(元)答:她应缴个人所得税45元。 (2)计算某商场5月份商品零售营业税。(课件第9张) 你会做吗?说说你的想法。小组合作:你是怎样想的?说说你的思考过程。(课件第10张)汇报交流:(课件第11张)生:先求总营业额,再求营业税。 72+35+46+21+56=230(万元)230×5%=1.15(万元) 答:这个商场5月份商品零售营业税是1.15万元。 (3)丰华商场9月份按规定缴了1.85万元的营业税,他们纳税的税率是5%。这个商场9月份的营业额是多少万元?(课件第12张)生1:把营业额看做单位“1”,求营业额,做除法。生2:1.85÷5%=1.85÷0.05=370(万元)答:这个商场9月份的营业额是370万元。生3:把营业额看做单位“1”,求营业额,也可以列方程解答。(课件第13张)解:设这个商场9月份的营业额是x万元。
(一)复习导入 1. 师:同学们,你们经常去超市吧?超市里有时候会有打折的活动,你知道什么是打折吗?(课件第2张)生:商店有时降价销售商品,叫做打折扣销售,俗称“打折”。2.你知道打折的含义吗?几折就表示十分之几,也就是百分之几十。比如打七折,就是按照原价的十分之七出售,也就是按原价的70%出售。这节课我们就来学习有关折扣的知识。(课件第3张)【设计意图】联系学生的生活实际引入课题,引起学生学习兴趣,使学生体会到生活中处处有数学。(二)探究新知 1、探究折扣的含义,计算打折后的价钱。(课件第3张)(1)星期天,小雨和爸爸来到商场买东西,正好赶上打折活动。小雨问爸爸:什么叫做“八五折”?你能回答小雨的问题吗?生1:“八五折”就是按原价的85%出售。你知道“九折”是多少吗?生2:“九折”就是按原价的90%出售。(2)爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?你会列式吗?(课件第4张)小组合作:你是怎样想的?说说你的思考过程。(课件第5张)(3)汇报交流:生1:把原价看做单位“1”,打八五折就是按原价的85%出售。(课件第6张)生2:现价=原价×折扣,求现价,做乘法。生3:180×85%=153(元)答:买这辆车用了153元。2、探究计算打折后便宜了多少钱的方法。爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少元?(课件第7张)(1)小组讨论:先求什么?再求什么?说说你的思考过程。生1:我先求现价是多少,再求比原价便宜了多少元。(课件第8张)列式为:160×90%=144(元)160-144=16(元)答:比原价便宜了16元。生2:我先求现价比原价便宜了百分之几,再求比原价便宜了多少元。(课件第9张)列式为:160×(1-90%)=160×10%=16(元)
(一)复习旧知,导入新课。1、师:同学们,你们还记得《乌鸦喝水》的故事吗?我们先来看一看这个故事吧!(课件第2张播放视频《乌鸦喝水》)【设计意图】用视频引入课题,激发学生的学习兴趣。2、乌鸦是怎么喝到水的?为什么?(课件第3张)生1:乌鸦把石子投进水罐中,水面升高了,乌鸦就喝到水了。生2:这说明石子占了一定的空间,所以水面会升高,乌鸦才能喝到水。师:这节课我们就来研究一下体积和体积单位。(板书课题)(二)探究新知1.小组实验并观察:(课件地4张)(1)取两个同样大小的玻璃杯,先往一个杯子里倒满水;取一块鹅卵石放入另一个杯子,再把第一个杯子里的水倒进第二个杯子里,会出现什么情况?为什么?(2)汇报交流:(课件第5张)生1:第一个杯子里的水不能全部倒入第二个杯子里。师:你知道为什么会出现这种现象吗?生2:鹅卵石占了一定的空间,所以第一个杯子会剩下一部分水。【设计意图】用实验的方式,让学生从实验的过程中发现现象并进一步思考原因,从而找到规律,培养学生的观察能力、思维能力。2.下面的洗衣机、影碟机和手机,哪个所占的空间大?(课件第6张)洗衣机所占的空间最大。3.引入体积的意义:师:物体所占空间的大小叫做物体的体积。师:上面三个物体,哪个体积最大?哪个体积最小? 生:洗衣机的体积最大,手机的体积最小。4.学习体积单位(课件第7张)(1)怎样比较下面两个长方体体积的大小呢?
(一)激趣导入。 一、创设情境,引入新课(课件第2张)1.谈话:师:同学们,这节课我们先来做一个抢答游戏,看你们对以前学过的知识掌握的怎么样。2.抢答:请同学们以最快的速度说出下面的数有几个因数。师出示数,学生抢答因数的个数。3.思考:(1)一个数的最小因数是几?最大因数是几?(课件第3张)(2)一个数的因数是有限的还是无限的?(3)怎样找一个数的因数?生1:一个数是最小因数是1,最大因数是它本身。 生2:一个数因数的个数是有限的。生3:找一个数的因数,用这个数依次除以1,2,3,4……商如果是整数,除数和商都是这个数的因数。 【设计意图】用抢答游戏的方式引入课题,引起学生的兴趣,通过对旧知识的复习,为下面要学习的质数与合数做准备。4.师:我们学过找一个数的因数的方法,那一个数的因数的个数又有什么规律呢?这节课我们来学习两个新概念:质数和合数。(板书课题) . (二)探究新知 1. 找出1—20各数的因数,看看它们的因数的个数有什么规律。(1)学生小组内交流,写出1——20各数的因数,看看它们的因数的个数有什么特点。(课件第4张演示)1的因数有:1 11的因数有:1,11 2的因数有:1,2 12的因数有:1,2,3,4,6,12 3的因数有:1,3 13的因数有:1,13 4的因数有:1,2,4 14的因数有:1,2,7,14 5的因数有:1,5 15的因数有:1,3,5,15 6的因数有:1,2,3,6 16的因数有:1,2,4,8,16 7的因数有:1,7 17的因数有:1,17 8的因数有:1,2,4,8 18的因数有:1,2,3,6,9,18 9的因数有:1,3,9 19的因数有:1,19 10的因数有:1,2,5,10 20的因数有:1,2,4,5,10,20
(一)复习导入 1.师:我们学过了因数的有关知识,下面老师就检验一下,看你们学得怎么样?(课件第2张)(1)24的因数有(1,2,3,4,6,8,12,24),30的因数有(1,2,3,5,6,10,15,30),24和30的公因数有(1,2,3,6),它们的最大公因数是(6)。(2)分数的分子和分母同时(乘)或(除以)一个(相同的数)(0除外),分数的大小(不变),这叫做分数的基本性质。【设计意图】复习旧知,约分的根据是分数的基本性质,要约成最简分数,需要分子和分母同时除以它们的最大公因数,所以复习环节设计了这两个知识点的练习,为学习新知识做准备。2.大家一定都喜欢孙悟空吧!你知道孙悟空最大的本事是什么吗?(72变)这节课我们就来创造第73变——变分数!(二)探究新知 1、探究约分的方法。(1)把化成分子和分母比较小且分数大小不变的分数。(课件第4张) 小组讨论:你是怎么想的?汇报交流(课件第5张)生1:可以用分子和分母的公因数(1除外)去除。生2:我用24和30的公因数2去除,,然后再用12和15的公因数3去除, 生3:我直接用24和30的最大公因数6去除。(2)用自己的话说说什么是约分?(课件第6张)生1:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
(一)复习旧知,导入新课。师:同学们,上节课我们认识了体积和体积单位,请你填一填这两道题,看看你学得怎么样。(课件第2张)1.常用的体积单位有(立方厘米)、(立方分米)、(立方米),可以分别写成(cm³) 、(dm³)、 (m³)。2.棱长是1cm的正方体,体积是(1cm³)。3.棱长是1dm的正方体,体积是(1dm³)。4.棱长是1m的正方体,体积是(1m³)。【设计意图】1dm³是多少cm³呢?这节课我们就来研究一下体积单位间的进率。(板书课题)(二)探究新知1.探究立方分米和立方厘米间的进率:(课件第3张)(1)下图是一个棱长为1dm的正方体,体积是1dm³。想一想,它的体积是多少立方厘米呢?(2)小组讨论,你是怎样想的?(3)汇报交流:(课件第4张)生1:如果把它的棱长看作是10cm,可以把它切成1000块1cm³的小正方体。10×10×10=1000.生2:它的底面积是1dm²,就是100cm²,100×10=1000,一共是1000cm³。1dm³=1000cm³【设计意图】用小组讨论的方式,让学生从讨论的过程中找到解决问题的方法,培养学生的语言表达能力、思维能力。2.你知道1m³等于多少立方分米吗?(课件第5张)生1:把棱长是1m的正方体,看作棱长是10dm的正方体,10×10×10=1000dm³。1m³=1000dm³。 生2:棱长是1m的正方体,底面积是1m²,就是100dm²,100×10=1000dm³,一共是1000dm³。生3:1m³=1000dm³ 3.整理计量单位之间的进率。(1)小组讨论:到现在为止,我们已经学习了哪些计量单位?请整理在表中。
二、教学目标1、知识与技能:通过观察、操作等实践活动,进一步加深对平移和旋转新知的认识。培养学生动手实践能力,并初步获得绘图、剪图等技能。2、数学思考:在对简单图形变化、运动规律的探索过程中,发展空间观念,培养形象思维能力和逻辑思维能力,初步渗透变换的数学思想方法。在解决问题过程中,能进行简单的、有条理的思考。3、解决问题:能在教师指导下,从日常生活中发现简单的数学问题。有与同伴合作解决问题的体验。初步学会表达解决问题的大致过程和结果。4、情感与态度:在同伴和教师的鼓励与帮助下,对身边的数学有好奇心,能够积极参与数学实践活动。能克服在数学活动中的某些困难,获得成功的体验,有学好数学的信心。了解并喜爱中国民间的传统工艺“剪纸”。
想一想:为什么在师生猜拳中老师一直说“5”能赢?为什么选择和多的那队没胜,而选择和少的那队却胜了?选择可能性大的是不是每次一定能赢?选择可能性小是不是每一次一定都输?(至此,本节课到了一个升华层次,学生通过互动游戏、自主探究、讨论分析,从而揭示了“猜拳游戏”中的秘密,对“可能性”的理解达到了一个更高水平,有效地完成了本课重难点教学。)(4)实践验证。实践验证理论。再一次组织学生有目的地猜和,进行实践验证。让理论与实践有机的结合(三)拓展创新,内化提升。儿童用品商店将要举行促销活动,凡到商店购物的顾客都可参加《转盘转转乐》活动。每位顾客可转两次,用两次指针所指数相加得到一个和,不同的和能得到相应的奖项。
教材分析这部分内容是在认识钟表上的整时、半时的基础上进一步认识钟面上的时、分。分是非常重要的时间单位,也是进一步学习年、月、日的基础。时间单位不像长度、质量单位那样容易表现出来,比较抽象,学生不容易理解。所以,应以学生的生活经验为基础,把学习内容与学生的生活实际密切联系起来,进行教学。“我们赢了”是结合“北京申奥成功”这一情境,让我们记住这一历史时刻——2001年7月13日晚上10时08分。用记载着这一历史时刻的钟面,引导学生交流自己对钟面的认识,激活学生已有的生活经验;同时,抓住机会渗透爱国主义教育,引导学生关注社会,关心时事。学情分析学生在一年级时已经学过了钟面的简单知识并会认识整时和整时半。但有关时间的认知显得有些混乱,对时针和分针表示的意义分辨不清,多数孩子还不能读出准确的时刻。
【反思】本节课的教学注重体现了情境教学在教学中的运用。课堂上体现了这样几个特点:1.数学知识与生活实际相结合。数学来源于生活,生活中处处有数学。小学生对熟悉的生活情境和事物感兴趣。所以我从他们熟悉的事物中寻找教学题材,设计了有趣的情景教学。让学生感到数学知识就在他们身边,感到数学的作用,设计了作息时间表。这样,既巩固了时间的知识。又可以教育学生在生活中要合理安排时间,不要浪费时间,做时间的主人。2.注重在学习中自主探究,合作交流。在教学《时间的计算》时,让学生用自己制作的学具表亲自动手拨一拨,想一想让他们主动尝试自主发展。教学例2时让他们小组合作交流学习方法。这些都体现了培养学生的能力.自主探究的精神。
(1)猜想设疑。组织学生进行游戏实践,结果可能是选择和少的那队赢了。为什么选择和多的那队没胜,选择和少的那队却胜了呢?这里面又藏着什么奥秘呢?“猜想”是有方向的猜测和判断,是学生有效学习的良好准备。这里通过引导学生大胆猜测,由猜测结果与实际结果不同而引发学生的认知冲突,进而激发学生的求知欲,为后面的教学埋下了伏笔,从而很自然的过渡到下一个环节。(2)统计实验。这部分教学让全体学生参与获得知识的全过程,并在实验中与统计知识有机结合起来,提高了学生综合运用知识的能力。同时让全体学生参与实验统计,实验数据更加充分,实验结果与预测更加接近,从而达到实验目的。
在运用定律进行简便计算时,学生仍然出现这样那样的错误,这一点我们在备课中应有所意识,适当调整课时安排,并充分考虑学生练习中可能出现的错误,加强易混知识的辨析练习。 四、教学目标:1、认识目标:使学生理解并掌握从一个数里连续减去两个数的几种常用算法,并能根据具体情况选择合适的方法进行简便计算。2、能力目标:培养学生根据实际情况灵活选择算法进行计算的意识与能力,提高学生观察比较能力和思维的灵活性,发展学生思维。 3、情感态度价值观目标:通过学习活动,激发学生的学习兴趣,使学生感受到数学与现实生活的联系,学会用所学知识解决简单的实际问题。 五、教学重点: 理解并掌握从一个数里连续减去两个数的几种常用算法,并运用其进行一些简便计算。
一、本节内容在教材中所处的地位和作用:本单元是在学生理解了四则运算的意义和学会用字母表示数的基础上进行学习的。由学习用字母表示数到学习方程,是学生又一次接触初步的代数思想,这既是对所学四则运算意义和数量关系的进一步深化,又是为今后学习代数知识作准备,在知识衔接上具有重要作用。而这一节恰好在这一单元之中起着承上启下的作用。二、 教学目标:1、在具体的活动中,体验和理解等式的性质,会用等式的性质解简单的方程。2、结合有关黔金丝猴的数量情况,对学生进行保护珍稀动物方面的教育。3、培养学生的观察、讨论、推理、合作交流能力。三、重点难点:重点:解简单方程、用方程解决问题。因为方程知识与现实生活联系比较紧密,同时是今后学习代数知识的基础,所以把解简单方程作为本节重点。
(设计意图:让学生充分表述自己的想法,强化学生的应用意识,培养学生解决实际问题的能力。从中发现可能性会随着数量的变化而变化的。)(四)归纳总结,完善认知1、学生汇报学习所得。(使学生体验探索成功的喜悦)2、教师评价学习态度。(让学生感受学习数学我能行)五、板书科学设计简单明了,重点突出,加深对所学知识的理解和掌握。通过以上创新处理,营造宽松的学习氛围,为学生创造联想猜测、动手操作、合作交流、自主探究、解决问题的机会,使学生在“自主——合作——探究”的学习过程中,体验数学探索成功的喜悦,体会到数学课堂充满生命的活力。以上是我对本节课的一些设想,还有待于在实践中去完善,如有不当之处,敬请各位专家评委给予批评和指正。
(3)补充题:2008年的奥运会在北京举行,小明的爸爸决定去北京观看一些比赛项目,为中国健儿加油。如果坐汽车,每小时行使60千米,4小时可以多少千米?如果坐火车,火车的速度是汽车的2倍,同样的时间可以行使多少千米?这题的第2个问题中蕴含着两种解题思路,让学生说一说、比一比。一种是根据速度×时间=路程的数量关系,先算出变化了的那个因数是多少,再求积。另一种是根据一个因数不变,另一个因数乘以几,原来的积也乘以几解决问题。两种方法得出的积相同,使学生体会积的变化规律是客观存在的普遍规律。『设计理念』在层次分明,形式多样的练习中,通过让学生想一想、填一填、说一说,使学生在规律的应用中逐步加深对积的变化规律的理解。
五、教学评价《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”这节课的设计着力让学生通过参与有效的实际操作、观察比较来概括出“找次品”的最佳方案。把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——反思——运用”的教学模式。让学生体验解决问题策略的多样性及运用优化的方法解决问题的有效性。培养学生的自主性学习能力和创造性解决问题的能力。(一)创设情景通过身边生活实例,为学生创设问题情景,让数学问题生活化,一上课就吸引住学生的注意力,调动他们的探究兴趣,为后面的教学做好铺垫,使学生进入最佳的学习状态。让学生充分感受到数学与日常生活的密切联系。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。