其主要目标是⑴引导幼儿观察蚂蚁,通过各种渠道收集蚂蚁的知识,培养幼儿对探索活动的兴趣。⑵了解蚂蚁特有的一些活动,如“气味语言”“分工合作”“搬运食物”“建筑巢穴”等,并引导幼儿用身体动作表现蚂蚁的活动。⑶培养幼儿关注生活的习惯,并能主动为活动收集相关的材料。⑷通过剪剪、画画、贴贴、做做等活动,培养幼儿动手操作的能力。⑸通过和蚂蚁的一系列接触,发展幼儿的想象创造能力,培养幼儿交往协作的能力。⑹培养幼儿亲近动物,喜爱动物的情感。⑺ 教师和幼儿共同体验游戏的快乐。以下是我们汲取的一些有关蚂蚁的活动片断,生动地再现了孩子们用已有的生活经验不断生成发展出更为生动有趣的、丰富的游戏情节。片断一:有趣的小蚂蚁午后的阳光暖暖的照在我们身上,小朋友们手拉着手悠然地走在这午后的阳光里。“看,那是什么呀?”“好象是蚂蚁吧。”“它们在干什么?”“在搬东西。”“好象是在搬草片儿。”“不对,是面包屑。”“蚂蚁那么小,怎么搬得动那么重的东西。”“你没看见有好几个蚂蚁在一起搬吗?”“对,大家一起搬就搬得动了,对吧?”“是的。”“小蚂蚁搬面包屑干嘛?”“当然是搬回家吃了。”“蚂蚁那么小,怎么吃东西呢?”“当然是用嘴巴吃了。”“蚂蚁那么小没有嘴巴。”“瞎说,蚂蚁有嘴巴,不然,它不要饿死吗?”“蚂蚁喜欢吃什么呀?”“好象喜欢吃甜甜的东西吧。”“是的,我以前看见过它们在搬饼干屑。”“对,我还看见它们都爬在我吃剩的西瓜皮上。”“是的,是的,我也看见过,而且,有许多许多蚂蚁。”“你说,它们怎么会知道的,真奇怪!”“它们是看到的。”“不,是闻到的。”(评析:无意中的发现,引起了孩子莫大的兴趣,他们的好奇心和兴奋的表情给了我们组织这次游戏活动的灵感。)教师拿来放大镜和昆虫盒,和孩子们一起进入了奇妙的蚂蚁世界。幼:我们去找一点糖来引引蚂蚁吧!幼:好的,我也去拿点饼干屑。幼:蚂蚁会住在哪里呢?幼:垃圾箱旁边,我看见过的。幼:不对,是草丛里。幼:是的,有一次我也在草里发现它们在爬呀爬,很好玩的。幼:好象是泥土里,我在电视上看到过。幼:看,这里有这么多洞!幼:嘘,别讲话,不然,他们就不出来了。幼:把饼干放在蚂蚁洞口,让它们出来搬。师:你在干嘛?幼:我在挖洞,让蚂蚁出来。
2、尝试创编歌词及制作图谱,体验歌唱活动的乐趣。 3、感受人与动物间和谐美好的关系,培养幼儿关心、爱护小动物的情感。二、活动准备: 图片《迷路的小花鸭》(一)(二),图谱(一)(二),哭笑脸谱各一个。三、活动过程: 1、练声:我爱我的小动物(5个音阶) (评析:开始部分的练声,既是为下面的歌唱活动作好准备,同时,也让幼儿在歌唱喜爱的小动物时自然地表达对动物的热爱之情。) 2、故事导入,激发幼儿的兴趣。 出示图片(一),师:你看到了什么? 幼A:我看到有一天,一只小鸭子在池塘边玩。 幼B:我看到小鸭子哭了。因为它想妈妈了。 幼C:我还看到了柳树。 师讲述故事:有一天,小花鸭在池塘边的柳树下玩,玩着玩着它迷路了,找不到家也找不到妈妈了,它哭了,哭着喊着叫它的妈妈。 (评析:这是一个开放性的问题,它打破了传统提问“这是什么地方?有谁?”等问题带来的局限性,它使幼儿能充分表达他们对画面意思的理解,使图片变活,也便于幼儿理解教师讲述的故事。)
新建成的红星中学,首次招收七年级新生12个班共500人,学校准备修建一个自行车车棚.请问需要修建多大面积的自行车车棚?请你设计一个调查方案解决这个问题.解析:决定自行车车棚面积的因素有两个,即自行车的数量与每辆自行车的占地面积.因此收集数据的重点应围绕这两个因素进行.解:调查方案如下:(1)对全体新生的到校方式进行问卷调查.调查问卷如下:你到校的方式是骑自行车吗?A.经常是 B.不经常是C.很少是 D.从不是(2)根据调查问卷结果分类统计骑自行车的人数;(3)实际测量或估计存放1辆自行车的大约占地面积;(4)根据学校的建设规划、财力等因素确定自行车车棚的面积.方法总结:确定调查方案时必须明确两个问题:(1)需要收集哪些数据?(2)采用什么方式进行调查可以获得这些数据?探究点三:从图表中获取信息小冰就公众对在餐厅吸烟的态度进行了调查,并将调查结果制作成如图所示的统计图,请根据图中的信息回答下列问题:
【类型一】 逆用积的乘方进行简便运算计算:(23)2014×(32)2015.解析:将(32)2015转化为(32)2014×32,再逆用积的乘方公式进行计算.解:原式=(23)2014×(32)2014×32=(23×32)2014×32=32.方法总结:对公式an·bn=(ab)n要灵活运用,对于不符合公式的形式,要通过恒等变形转化为公式的形式,运用此公式可进行简便运算.【类型二】 逆用积的乘方比较数的大小试比较大小:213×310与210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,又∵23<32,∴213×310<210×312.方法总结:利用积的乘方,转化成同底数的同指数幂是解答此类问题的关键.三、板书设计1.积的乘方法则:积的乘方等于各因式乘方的积.即(ab)n=anbn(n是正整数).2.积的乘方的运用在本节的教学过程中教师可以采用与前面相同的方式展开教学.教师在讲解积的乘方公式的应用时,再补充讲解积的乘方公式的逆运算:an·bn=(ab)n,同时教师为了提高学生的运算速度和应用能力,也可以补充讲解:当n为奇数时,(-a)n=-an(n为正整数);当n为偶数时,(-a)n=an(n为正整数)
解析:(1)根据表中信息,用优等品频数m除以抽取的篮球数n即可;(2)根据表中数据,优等品频率为0.94,0.95,0.93,0.94,0.94,稳定在0.94左右,即可估计这批篮球优等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)这批篮球优等品的概率估计值是0.94.三、板书设计1.频率及其稳定性:在大量重复试验的情况下,事件的频率会呈现稳定性,即频率会在一个常数附近摆动.随着试验次数的增加,摆动的幅度有越来越小的趋势.2.用频率估计概率:一般地,在大量重复实验下,随机事件A发生的频率会稳定到某一个常数p,于是,我们用p这个常数表示随机事件A发生的概率,即P(A)=p.教学过程中,学生通过对比频率与概率的区别,体会到两者间的联系,从而运用其解决实际生活中遇到的问题,使学生感受到数学与生活的紧密联系
解析:根据“全等三角形的对应角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形内角和定理来求∠ACB的度数.解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法总结:本题将三角形内角和与全等三角形的性质综合考查,解答问题时要将所求的角与已知角通过全等及三角形内角之间的关系联系起来.三、板书设计1.全等形与全等三角形的概念:能够完全重合的图形叫做全等形;能够完全重合的三角形叫做全等三角形.2.全等三角形的性质:全等三角形的对应角、对应线段相等.首先展示全等形的图片,激发学生兴趣,从图中总结全等形和全等三角形的概念.最后总结全等三角形的性质,通过练习来理解全等三角形的性质并渗透符号语言推理.通过实例熟悉运用全等三角形的性质解决一些简单的实际问题
【类型二】 根据数轴求不等式的解关于x的不等式x-3<3+a2的解集在数轴上表示如图所示,则a的值是()A.-3 B.-12 C.3 D.12解析:化简不等式,得x<9+a2.由数轴上不等式的解集,得9+a=12,解得a=3,故选C.方法总结:本题考查了在数轴上表示不等式的解集,利用不等式的解集得关于a的方程是解题关键.三、板书设计1.不等式的解和解集2.用数轴表示不等式的解集本节课学习不等式的解和解集,利用数轴表示不等式的解,让学生体会到数形结合的思想的应用,能够直观的理解不等式的解和解集的概念,为接下来的学习打下基础.在课堂教学中,要始终以学生为主体,以引导的方式鼓励学生自己探究未知,提高学生的自我学习能力.
解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四边形AFBD是矩形.方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.三、板书设计矩形的判定对角线相等的平行四边形是矩形三个角是直角的四边形是矩形有一个角是直角的平行四边形是矩形(定义)通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
中班的幼儿开始愿意探究新异的事物或现象来满足自己的好奇心,所以,我们的科学活动设计要在浅显易懂,适合中班幼儿年龄特征的同时,引发幼儿对科学的初步探究能力。中班的幼儿已经具有注意到新异事物或现象的,因此,我们在设计科学活动时要让幼儿充分发挥想象,对磁铁这种“新异”事物提出问题,如什么是磁铁?什么时候看见过磁铁?等等类似的问题,可以增强幼儿的探索兴趣,提高幼儿的探索的积极性,有利于激发幼儿的想象力。 中班幼儿主要以具体形象为主,需要具体的活动场景和活动形式,所以活动设计要提供幼儿合适的情景以提供操作思考的机会,进一步发展幼儿的自主性和主动性。中班幼儿与小班幼儿相比,活动时间也有所增加,因此也需要在活动时间上给予一定的保证。
教法分析:在新课程的教学中教师要向学生提供从事数学活动的机会,倡导让学生亲身经历数学知识的形成与应用过程,鼓励学生自主探索与合作交流,让学生在实践中体验、学习。因此,本节课我采用了多媒体辅助教学与学生动手操作、观察、讨论的方式,一方面能够直观、生动地反映各种图形的特征,增加课堂的容量,吸引学生注意力,激发学生的学习兴趣;另一方面也有利于突出重点、突破难点,更好地提高课堂效率。学法分析:初二年级学习对新事物比较敏感,通过新课程教学的实施,学生已具有一定探索学习与合作交流的习惯。但是一下子要学生从直观的图形去概括出抽象图形全等的概念这是比较困难的。因此,我指导学生:一要善于观察发现;二要勇于探索、动手实验;三要把自己的所思所想大胆地进行交流,从而得出正确的结论,并掌握知识。
《花的学校》是一首优美而富有童趣的诗歌,作者用拟人手法,展开了丰富的想象。作者巧妙地从孩子的眼中叙出花儿们的活泼、可爱、美丽、向上,充满了儿童情趣。诗歌的语言和所描绘的情境很能调动学生相关的情感体验,激发他们的学习兴趣,使他们对学习内容产生亲近感。教学中我注重学生的朗读指导,读出花孩子的天真烂漫、活泼可爱、勇敢坚强、活泼向上、童真童趣。同时也注重培养学生的问题意识。课文的想象非常大胆、有趣、合理,可以结合课后练习题让学生进行想象力训练。
二、教学重难点 教学重点:有感情地朗读课文,整体感知课文内容,品味揣摩语句。 教学难点:品读文章运用比喻、拟人等修辞方法在写景中的作用,提高语言运用的能力,激发自身对祖国自然景色的热爱之情。 三、教学方法 朗读法、活动教学法、媒体教学法、小组合作探究法 四、教学过程 (一)新课导入 导语:老舍在《济南的秋天》里说:“上帝把夏天的艺术赐给瑞士,把春天赐给了西湖,秋和冬全给了济南。”尤其是北中国的寒冬,脑海中浮现的多是朔风怒号、冰封雪飘、天寒地冻的画面。(多媒体出示画面)今天,我们就来学习他的《济南的冬天》,看大自然赐给了济南什么样绝美的景致,竟那样令作者心醉神迷,写出这样的评价。
《G弦上的咏叹调》是创作于1729-1731年的管弦乐作品。后经小提琴家威廉米改编,主旋律完全在小提琴G弦上演奏,因此得名。巴赫是巴洛克时期的德国作曲家,杰出的管风琴、小提琴、大键琴演奏家,同作曲家亨德尔和D.斯卡拉蒂齐名。巴赫被普遍认为是音乐史上最重要的作曲家之一,他的创作使用了丰富的德国的音乐风格和娴熟的复调技巧。他的音乐集成了巴洛克音乐风格的精华。并被尊称为西方“现代音乐”之父,也是西方文化史上最重要的人物之一。
教学过程:一、导入新课。这节课老师和同学们一道去领略西洋音乐的发展历程。二、讲授新课。同学们,你们还认识这些乐器吗?教师播放录音,带上设计好的乐器音色音响片段,逐一提问。(1)《G弦上的咏叹调》播放录音,熟悉作品,简介作曲家的生平及其代表作品以及这部作品的创作始末。(巴赫作曲家,管风琴演奏家,教育家,欧洲“巴罗克音乐”的代表人物之一,被誉为“欧洲近代音乐之父”。代表作品有声乐曲《马太受难曲》、《b小调弥撒曲》以及管弦乐《勃兰登堡协奏曲》等)。
一、导入师:优美的旋律把我们又一次带到舞剧《红色娘子军》的故事情节中。今天我们要欣赏的是被誉为中国的四小天鹅舞曲美称的《快乐的女战士》舞蹈音乐。二、欣赏乐曲1、观看舞蹈视频《快乐的女战士》。师:在舞剧的第四场中,有一段《女战士与炊事班长》的舞蹈音乐——《快乐的女战士》。请同学们观看舞蹈视频。师:请同学们感受一下这段乐曲的旋律,它和《军民团结一家亲》有什么联系?生:旋律轻快、活泼。学生聆听音乐并回答:乐曲开始用的就是《军民团结一家亲》的旋律。师:乐曲的引子用的就是《军民团结一家亲》开始的旋律,也是《五指山歌》的旋律,我们把它叫做“万泉河”主题。2、欣赏乐曲第一主题。师:让我们来熟悉乐曲的第一主题,听听这段主题是用什么乐器演奏的?学生聆听欣赏乐曲一部分。
教学过程:一、导入新课:1、 播放童话故事《白雪公主》(1)《白雪公主》出自哪部童话集?作者是谁?哪个国家的?(2)同学们都知道德国有哪些著名的艺术家和诗人?(黑格尔、马克思、歌德、贝多芬、海涅、门德尔松……)2、词曲作者简介:海涅:德国著名的诗人,他一生写有三千多首诗句,有一千多首被作曲家谱写成了曲子。门德尔松:德国作曲家、指挥家、钢琴家。自幼受到良好教育。1834年他在杜塞尔多夫担任指挥时,他阅读了海涅的抒情诗,灵感突现,迅速写下了这首被世人广泛传唱的名曲《乘着歌声的翅膀》。二、学唱歌曲1、节奏训练:a、X | X X XXX | X.X X | XX XXX | X. 0 0 ||b、XXX XXX | X.X X |XXXX X X | X.0 X ||c、X | X X XXX X| X.X 0 X |X XXXX X| X. X. ||要求:手划拍读节奏
教学目标:1、学生能在欣赏多首歌曲的过程中说出具有民族、通俗和美声演唱者特有的不同风格和不同的演唱特点,并能简单地模仿三种具有不同歌唱特点的歌唱。2、欣赏歌曲《我的未来不是梦》时,学生能用简洁的语言归纳通俗唱法的演唱特点,并能用齐唱的方式表现这首歌曲。教学过程:1、完整地跟着音乐学唱第一遍。提问:音乐共有两部分组成,分别有什么特点?在演唱的过程中应该唱出怎样的特点?2、分段唱一唱:第一部分要注意弱起小节的节奏和每句末的延长音时值要唱足;第二部分要注意每句末的休止节奏,同时演唱方法与第一部分形成对比,有平稳、舒缓的歌唱转换成有激情的歌唱,并且随着音乐的进行推向高潮!思考:在齐唱过程中应该注意什么? 3、再次完整地跟着音乐齐唱全曲。在学生歌唱过程中建议老师用钢琴伴奏,找一个合适学生歌唱的调式弹伴奏,杜绝用低八度歌唱。
2、引导幼儿用学过的花纹、创作花纹,装饰纸袋,要求色彩鲜艳。3、培养幼儿的发散性思维能力和审美能力。活动准备:纸袋样品、制作图解、挂历纸、剪刀、胶棒、油画棒、粘画活动过程:1、欣赏美丽的春天风光,感受家乡的美丽。2、激发幼儿爱家乡爱聊城的情感,让家乡的春天更美丽,启迪幼儿环保意识。3、如何使家乡更美丽?
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。