提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

人教版新课标小学数学三年级下册整十、整百数乘整十数说课稿

  • 小班数学教案  认识

    小班数学教案 认识

    【活动准备】1、课前做老鹰捉小鸡的游戏。2、磁性教具:小房子1座,小白兔1只,许多萝卜(个数与幼儿人数相等)。3、小篮子1只。 【教学过程】一、开始部分:  语言导入:“今天老师给小朋友讲一个新故事,小朋友要认真听,我们来比一比哪位小朋友听得最认真。” 二、基本部分:1、教师边讲述故事《小兔拔萝卜》,边演示磁性教具,帮助幼儿认知“1”和“许多”。  教师:“在很远很远的地方有一座小房子(出示磁性教具小房子),房子里面有一位小主人,你们看它是谁?(出示磁性教具小白兔)。  小朋友:“小白兔”  教师:“这是几只小白兔?”  小朋友:“1只”  教师出示萝卜问:“这只小白兔在干什么呀?”(出示磁性教具萝卜)。  小朋友:“拔萝卜”  教师:“小白兔的萝卜地里有多少萝卜?”  小朋友:“许多萝卜。”

  • 小班数学教案  看朋友

    小班数学教案 看朋友

    目标: 1、乐意参与3以内的数数活动,初步理解数的实际意义。 2、体验去朋友家做客的快乐。  准备: 1、布置家的场景:物品按数量1、2、3一组分散放于三个柜中。1——3数字宝宝图片(粘于椅子上) 2、水果一篮 3、歌曲:看朋友、找朋友   过程: 1、带礼物去看朋友   交代:今天去看朋友,但要带什么礼物去呢?   模仿开汽车,边唱歌:看朋友,到数字宝宝家。   敲门,进去,和数字宝宝打招呼。   个别提问:你在和谁打招呼?

  • 小班数学教案  它们是一组

    小班数学教案 它们是一组

    2.指导幼儿依据不同标准对物体进行分类。活动准备1.一套动物图卡,其中有一张是汽车图卡。2.苹果、梨、橘子、香蕉四种水果若干。3.不同颜色、大小、形状的积木若干。  活动过程1.参考提问:请幼儿观察图卡并说出图卡上都有些什么?请幼儿将自认为不对(它和这些图卡不一样或不是一类)的图卡拿出来,并说出为什么。

  • 小班数学教案:接龙

    小班数学教案:接龙

    2.能观察、比较出相同的颜色、形状、大小。   3.愿意参加操作活动,并用语言表达自己的操作过程和结果。   活动准备:   小房子图片(3张),小动物图片(小兔子、小熊、小猫),幼儿操作卡片   活动过程:   1.故事的方式,引出课题 森林里住着3只小动物他们非常的贪玩,每次一跑出去玩就不知道回家了。每次他们 妈妈都是东找西找的,有好几次都急的哭了。可是这3只小动物啊,还是不知道改正这个错误。这件事情啊,被森林里面的智慧爷爷知道了非常气。于是,智慧爷爷就告诉这3只小动物,:“你们不听妈妈的话,每次出去玩都不知道回家,你们做错了事情,还不知道改正,那就要受到惩 罚了。我已经把你们回家的路给没收了,每条路只留了前面几块砖,除非你们找出规律并且正确的把砖铺对了,才能再回到家里。”3个小动物一听,就嗷嗷大哭起来,这可怎么办啊。后悔自己没有听妈妈的话早点回家,他们呀就做在一起想啊想啊,想怎么把回家的路铺好,可是三个小动物伤透了脑筋也想不出来,一直在哭着,就想请你们来帮帮他们回到家,小朋友愿意帮忙吗?   评析:用故事导入的形式,设置问题,去帮小动物来铺路引起幼儿铺路的兴趣,为整个活动的有序开展奠定了基础。   2.启发幼儿观察小路,并发现其中的排列规律。   (1)出示接龙卡:小兔铺路用的砖头上有什么图形?每块砖上面图形的颜色一样吗?   (2)教师示范铺路,小兔铺的路是黄色和黄色手拉手,接下来该铺哪一块砖?为什么铺这块?   (3)教师小结:原来小兔铺的路是按照一样颜色和一样颜色手拉手的。   评析:这一环节教师以合作者的身份与幼儿共同活动,通过教师的操作,让幼儿来发现其图形接龙的规律知道相同颜色的图形接在一起。

  • 小班数学教案  超市购物

    小班数学教案 超市购物

    2、正确判断并找出一模一样的物品。  活动准备:  教具:橙边大卡片4张、红边大卡片16张(4组,每组4张)、小猴大卡片1张、磁铁(自备)。  幼儿材料:<超市购物>游戏图、<购物单>卡片。活动过程:一、引入活动  1、介绍新朋友。  师:“小朋友,你们看今天有一位客人来这里,它是谁?”  2、欢迎新朋友。  师:“哦!我们对它表示欢迎吧!”(师带领幼儿一起鼓掌)  3、为新朋友起名字。  师:(拿起小猴子大卡片遮住脸,声音稍变,模仿小猴子)说:“你们好,小朋友!你们认识我吗?知道我叫什么名字吗?帮我取一个吧?”(老师挑一个幼儿起的名字运用,如‘花花’等)

  • 生活中的数字说课稿

    生活中的数字说课稿

    1、数字找朋友——激发幼儿对数学活动的兴趣。  2、找数字——幼儿在食物上找数字,并激励幼儿相互交流,说说自己的发现。  3、生活中的数字——通过讲述、猜想来激励幼儿畅所欲言,充分调动幼儿的积极性,营造轻松愉悦的氛围,拓展幼儿已有的生活经验。  4、幸运号码——通过游戏发现数字的趣味性和丰富性,从而更真切的体会数字的神奇,随便的调换数字的位置就可以排成不同的数字组合。  5、设计电话号码——幼儿运用已有的知识解决问题,为自己编电话号码。让没个幼儿参与其中,从而体验成功感,使他们对数字产生极大的兴趣,激励幼儿在生活中主动观察事物和运用数字,为以后学习奠定基础。

  • 反比例函数说课稿

    反比例函数说课稿

    二)重点、难点及成因分析:重点:反比例函数概念、图象和性质。概念是确定解析式的前提,图象和性质是其灵魂,是数形结合思想方法的具体表现,故是本节的重点。难点:画反比例函数的图象。它的图象有两个分支,且其变化趋势又非直线,学生初次接触,会感到有些困难。(

  • 人教版高中数学选修3全概率公式教学设计

    人教版高中数学选修3全概率公式教学设计

    2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?

  • 人教版高中数学选修3条件概率教学设计

    人教版高中数学选修3条件概率教学设计

    (2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.

  • 人教版高中数学选修3正态分布教学设计

    人教版高中数学选修3正态分布教学设计

    3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.

  • 人教版高中数学选修3超几何分布教学设计

    人教版高中数学选修3超几何分布教学设计

    探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.

  • 人教版高中数学选修3二项式定理教学设计

    人教版高中数学选修3二项式定理教学设计

    二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√

  • 正数和负数教案

    正数和负数教案

    1、根据3、-3、3。5、-4。5、-5。2、8。5、4。0、-1。2引出正数和负数的定义及特征性质。① 像3、3。5这样大于0的数叫做正数;② 像-3、-4。5这样在正数前面加上符号“-”的数叫做负数。③ 根据需要,有时在正数前面加“+”号,例如+3、+2、+0。5……,就是3、2、0。5……。④ 一个数前面的“+”和“-”号叫做它的符号。⑤ 注意:0既不是正数,也不是负数.2、通过课堂练习1和课堂练习2引出相反意义的量的定义、《活学巧计》诗及做类似题时的方法总结。① 在生活中存在各种各样的量,其中有一种量,它们的属性相同(即同类量),但表示的意义却相反,我们把这样的量叫做相反意义的量.② 活学巧记 相反意义量成对,还要数量和单位, 你为正来我为负,正负兄弟齐上阵。

  • 高中数学人教版必修二直线的点斜式方程教案

    高中数学人教版必修二直线的点斜式方程教案

    【教学目标】知识目标:理解直线的点斜式方程、斜截式方程、横截距、纵截距的概念;掌握直线的点斜式方程、斜截式方程的确定.能力目标:通过求解直线的点斜式方程和斜截式方程,培养学生的数学思维能力与数形结合的数学思想.情感目标:通过学习直线的点斜式方程和斜截式方程,体会数形结合的直观感受.【教学重点】直线的点斜式方程、斜截式方程的确定.【教学难点】直线的点斜式方程、斜截式方程的确定.

  • 高中数学人教版必修二直线的点斜式方程教案

    高中数学人教版必修二直线的点斜式方程教案

    【教学重点】直线的点斜式方程、斜截式方程的确定.【教学难点】直线的点斜式方程、斜截式方程的确定.【教学过程】1、对特殊三角函数进行巩固复习;表1 内特殊三角函数值 不存在图1 特殊三角形2、巩固复习直线的倾斜角和斜率相关内容;直线的倾斜角:,;直线的斜率: , ;设点为直线l上的任意两点,当时,

  • 《一次函数与二元一次方程组》说课稿

    《一次函数与二元一次方程组》说课稿

    一、 说教材、目标这部分内容建立在学生对一元一次方程、二元一次方程组和一元一次不等式等以一次(线性)运算为基础的数学模型的已有认识上,从变化和对应的角度对一次运算进行更深入的讨论。从函数的角度对一次方程(组)、不等式重新进行了分析,这种再认识不是对原有知识的简单回顾复习,而是站在更高起点上的动态分析,是用一次函数将上述三个不同的数学对象起来认识,发挥函数对相关内容的统领作用。通过这部分内容的学习,不仅可以加深学生对方程(组)、不等式等数学对象的理解,而且可以增强对相关知识的内在联系的认识,加强知识间横向与纵向的融会贯通,提高灵活分析和解决问题的能力。本节课是在前两节课已经学完了一次函数与一元一次方程、一元一次不等式的联系之后,对一次函数与二元一次方程(组)关系的探索,是对一次函数及其相关内容更深入、更全面的学习,也是对这部分内容的一个提升和总结。

  • 在全市城市功能品质大提升暨城市建管十大提升行动推进大会上的讲话

    在全市城市功能品质大提升暨城市建管十大提升行动推进大会上的讲话

    从规划看,城市规划科学性不够。当前我市在城市规划中还存在着一些不足和需要改进的空间,主要体现在“三个滞后”:一是城市规划设计滞后于城市开发建设,规划有时被建设牵着鼻子走,导致建设不科学不规范无秩序,特别是在高层次大格局谋划X发展上,与大X都市圈周边县市规划衔接不够,以五大功能新城为载体联动周边地区发展规划不够;二是基础设施配套滞后于经济社会发展,地下管网建设滞后,地下空间利用不足,道路和公共基础设施建设缺乏长远性和预见性,造成建设浪费;三是规划设计理念滞后于高品质城市建设需求,城市总体规划、修建性详规、控制性详规等缺乏前瞻性和引领性,对城市风格风貌、色彩色调、天际线岸际线把控不够精细,对城市特质、山水格局彰显不够鲜明。

  • 妇女儿童发展十四五规划实施情况中期评估报告(工作汇报总结)

    妇女儿童发展十四五规划实施情况中期评估报告(工作汇报总结)

    (一)调整产业结构,大力发展经济,创造良好的就业环境随着社会转型产业升级和国家就业政策的引导支持,妇女就业问题得到缓解,但劳动力剩余导致的失业现象仍然存在。虽然县相关职能部门在这方面做了大量的工作,但这只解决了燃眉之急,没有根本解决问题。20xx年城镇登记失业人数达x万人,其中女性失业人数x万人,在失业总人数中女性占到x%。对此,我们要多开发一些适合女性就业的工作岗位,多为女性创造一些就业机会,为促进妇女的就业创造良好的政策环境。不断帮助妇女转变就业观念,鼓励她们参加免费职业培训、创业培训,使其有一技之长;积极落实如小额贷款、税收等优惠政策,促进妇女就业。(二)应健全完善未成年人保护工作的组织协调机制留守儿童缺少关爱成为重要的社会问题。随着城镇化进程的不断推进,留守儿童问题已经成为一个社会问题,而且成上升趋势。父母双方在外的留守儿童有x%以上随祖辈生活,由于父母不在身边,亲情缺失,监护不力,留守儿童几乎生活在无限制状态下。主要存在以下问题:一是身体素质不佳。

  • 两直线的交点坐标教学设计人教A版高中数学选择性必修第一册

    两直线的交点坐标教学设计人教A版高中数学选择性必修第一册

    1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圆的标准方程教学设计人教A版高中数学选择性必修第一册

    圆的标准方程教学设计人教A版高中数学选择性必修第一册

    (1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.

上一页123...152153154155156157158159160161162163下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。