老师、同学们,大家早上好!每年三月份最后一周的周一是全国中小学生的安全教育日,今天是第21个全国中小学生安全教育日。我校决定将本周确定为安全教育周。在这周里,我校将要开展两个安全教育实践活动。为了让活动顺利进行,老师、同学们一定要牢记安全第一。安全教育是一个沉重的话题,虽然近年来安全教育越来越得到社会各界的重视,同学们的安全意识有所增强,但重大的伤亡事故仍时有发生。据有关部门统计,近年来,全国中小学每年非正常死亡人数达到16000多人,平均每天就有40多名中小学生不幸死亡。数字是枯燥的,但它的背后是一个个鲜活的生命,这就说明学校并不是一块安全的净土,校园安全形势依然非常严峻。作为老师,我们要有高度的安全意思,充分认识到安全工作的重要性和紧迫感。各位班主任要认真上好每周的安全教育课,将学生的安全工作摆在重要位置,做到经常教育,及时教育,教育到位,教育全面,若发现有安全隐患,要及时向学校汇报,防患于未然。对安全工作不能存有丝毫的麻痹侥幸的心理。本周是安全周,希望各位班主任对照我校安全周的活动安排,认真落实安全教育。
老师们、同学们,大家上午好!在全国第22个中小学生安全教育日来临之际,河南省教育厅和郑州市教育局今天联合在郑州市实验高级中学举行安全会议和学生的演练活动。我首先代表河南省教育厅向本次活动的承办单位表示衷心的感谢,向辛勤工作在教育一线的各位老师们表示崇高的敬意,向热爱生活,勤奋学习的各位同学表示亲切的慰问。今年的中小学生安全教育活动主题是“强化安全意识,提升安全素养”。我个人认为要想唱响活动,我们需要落实到每一个环节,需要大家做出以下“四个努力”:首先,校长要做出努力。大家知道,校长是学校安全的责任人,所以我们每一位校长在学校的各项工作当中,应该始终把学校的安全,师生的安全放在各项工作的首位。第二,要完善制度,明确责任。学校的教育教学活动、体育娱乐活动、社会实践活动,后勤保障、医疗服务等各方面,我们都要有完善的制度。要明确每一个单位、每一个部门,包括每一位教职工的责任。大家都知道,我这个岗位应该怎么做,防止出现漏洞。第三,我感觉到要根据各个学校的情况,及时全面的进行安全漏洞的排查,发现隐患及时处置,不留漏洞。校长如果把这些事情做好了,可以说,我们就是一个比较安全的校园,我们的责任就尽到了。
XX小学暑假安全教育国旗下讲话稿各位老师,亲爱的同学们,大家好!紧张的一个学期接近尾声了,我们又迎来了盼望已久的暑假。怎样过好这个长假呢?我们有太多的设想与计划,我们有太多的欣喜与希望。可是,这一切,都是建立在安全的基础上的。因此在假期中,我们每一个同学都必须提高安全意识,学会自我保护。今天,我在这里要再三重申和提醒大家:安全是生命之水,文明是幸福之源!假期一定注意安全,希望大家不仅要记在脑子里,更要落实到行动上。希望同学们从以下几个方面做起:1、防溺水事故:溺水事故是夏季在安全方面存在的最大隐患,因为每年在这个季节里我们的周围都会发生许许多多令人惨痛的事故和教训,并且这些教训往往是以生命的失去而作为代价的;而对于一个家庭来讲,孩子生命的失去往往就意味着一个幸福家庭的破裂甚至毁灭。今天,我再次重申,绝对禁止到危险水域玩水。由于天气炎热,这个问题最容易出现,请同学们务必引起注意,坚决做到不在水库或深水区玩耍;不准与同学结伴到无安全设施、不熟悉,无救护人员的水域游泳。游泳时一定要有家长的陪同。
同学们:“全国中中职生安全教育日”是定在每年3月份的最后一个星期的星期一。今天是3月30日,是XX年3月份最后一个星期的周一,所以在此跟同学们谈以下几个全面:1、做好春季防病。春季是多种传染病流行的季节,同学们要注意个人卫生,勤洗手,教室勤通风,勤锻炼,不暴饮暴食。2、不允许玩火、玩电,防止人身伤害,防止意外事故的发生。禁止将爆竹、火柴、打火机等易燃、易爆品带入校园,更不允许将刀、弹弓、防真气枪等危险玩具带进校园。
幂函数是在继一次函数、反比例函数、二次函数之后,又学习了单调性、最值、奇偶性的基础上,借助实例,总结出幂函数的概念,再借助图像研究幂函数的性质.课程目标1、理解幂函数的概念,会画幂函数y=x,y=x2,y=x3,y=x-1,y=x 的图象;2、结合这几个幂函数的图象,理解幂函数图象的变化情况和性质;3、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力.数学学科素养1.数学抽象:用数学语言表示函数幂函数;2.逻辑推理:常见幂函数的性质;3.数学运算:利用幂函数的概念求参数;4.数据分析:比较幂函数大小;5.数学建模:在具体问题情境中,运用数形结合思想,利用幂函数性质、图像特点解决实际问题。重点:常见幂函数的概念、图象和性质;难点:幂函数的单调性及比较两个幂值的大小.
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.3.2节《对数的运算》。其核心是弄清楚对数的定义,掌握对数的运算性质,理解它的关键就是通过实例使学生认识对数式与指数式的关系,分析得出对数的概念及对数式与指数式的 互化,通过实例推导对数的运算性质。由于它还与后续很多内容,比如对数函数及其性质,这也是高考必考内容之一,所以在本学科有着很重要的地位。解决重点的关键是抓住对数的概念、并让学生掌握对数式与指数式的互化;通过实例推导对数的运算性质,让学生准确地运用对数运算性质进行运算,学会运用换底公式。培养学生数学运算、数学抽象、逻辑推理和数学建模的核心素养。1、理解对数的概念,能进行指数式与对数式的互化;2、了解常用对数与自然对数的意义,理解对数恒等式并能运用于有关对数计算。
学生已经学习了指数运算性质,有了这些知识作储备,教科书通过利用指数运算性质,推导对数的运算性质,再学习利用对数的运算性质化简求值。课程目标1、通过具体实例引入,推导对数的运算性质;2、熟练掌握对数的运算性质,学会化简,计算.数学学科素养1.数学抽象:对数的运算性质;2.逻辑推理:换底公式的推导;3.数学运算:对数运算性质的应用;4.数学建模:在熟悉的实际情景中,模仿学过的数学建模过程解决问题.重点:对数的运算性质,换底公式,对数恒等式及其应用;难点:正确使用对数的运算性质和换底公式.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入回顾指数性质:(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么对数有哪些性质?如 要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
对数与指数是相通的,本节在已经学习指数的基础上通过实例总结归纳对数的概念,通过对数的性质和恒等式解决一些与对数有关的问题.课程目标1、理解对数的概念以及对数的基本性质;2、掌握对数式与指数式的相互转化;数学学科素养1.数学抽象:对数的概念;2.逻辑推理:推导对数性质;3.数学运算:用对数的基本性质与对数恒等式求值;4.数学建模:通过与指数式的比较,引出对数定义与性质.重点:对数式与指数式的互化以及对数性质;难点:推导对数性质.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入已知中国的人口数y和年头x满足关系 中,若知年头数则能算出相应的人口总数。反之,如果问“哪一年的人口数可达到18亿,20亿,30亿......”,该如何解决?要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。2.掌握判定函数和函数相等的方法。3.学会求函数的定义域与函数值。数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。重点:函数的概念,函数的三要素。难点:函数概念及符号y=f(x)的理解。
例7 用描述法表示抛物线y=x2+1上的点构成的集合.【答案】见解析 【解析】 抛物线y=x2+1上的点构成的集合可表示为:{(x,y)|y=x2+1}.变式1.[变条件,变设问]本题中点的集合若改为“{x|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全体实数.变式2.[变条件,变设问]本题中点的集合若改为“{y|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{ y| y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全体实数.解题技巧(认识集合含义的2个步骤)一看代表元素,是数集还是点集,二看元素满足什么条件即有什么公共特性。
本节课选自《普通高中课程标准数学教科书-必修一》(人 教A版)第五章《三角函数》,本节课是第1课时,本节主要介绍推广角的概念,引入正角、负角、零角的定义,象限角的概念以及终边相同的角的表示法。树立运动变化的观点,并由此进一步理解推广后的角的概念。教学方法可以选用讨论法,通过实际问题,如时针与分针、体操等等都能形成角的流念,给学生以直观的印象,形成正角、负角、零角的概念,明确规定角的概念,通过具体问题让学生从不同角度理解终边相同的角,从特殊到一般归纳出终边相同的角的表示方法。A.了解任意角的概念;B.掌握正角、负角、零角及象限角的定义,理解任意角的概念;C.掌握终边相同的角的表示方法;D.会判断角所在的象限。 1.数学抽象:角的概念;2.逻辑推理:象限角的表示;3.数学运算:判断角所在象限;4.直观想象:从特殊到一般的数学思想方法;
学生在初中学习了 ~ ,但是现实生活中随处可见超出 ~ 范围的角.例如体操中有“前空翻转体 ”,且主动轮和被动轮的旋转方向不一致.因此为了准确描述这些现象,本节课主要就旋转度数和旋转方向对角的概念进行推广.课程目标1.了解任意角的概念.2.理解象限角的概念及终边相同的角的含义.3.掌握判断象限角及表示终边相同的角的方法.数学学科素养1.数学抽象:理解任意角的概念,能区分各类角;2.逻辑推理:求区域角;3.数学运算:会判断象限角及终边相同的角.重点:理解象限角的概念及终边相同的角的含义;难点:掌握判断象限角及表示终边相同的角的方法.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入初中对角的定义是:射线OA绕端点O按逆时针方向旋转一周回到起始位置,在这个过程中可以得到 ~ 范围内的角.但是现实生活中随处可见超出 ~ 范围的角.例如体操中有“前空翻转体 ”,且主动轮和被动轮的旋转方向不一致.
知识探究(一):普查与抽查像人口普查这样,对每一个调查调查对象都进行调查的方法,称为全面调查(又称普查)。 在一个调查中,我们把调查对象的全体称为总体,组成总体的每一个调查对象称为个体。为了强调调查目的,也可以把调查对象的某些指标的全体作为总体,每一个调查对象的相应指标作为个体。问题二:除了普查,还有其他的调查方法吗?由于人口普查需要花费巨大的财力、物力,因而不宜经常进行。为了及时掌握全国人口变动状况,我国每年还会进行一次人口变动情况的调查,根据抽取的居民情况来推断总体的人口变动情况。像这样,根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和判断的方法,称为抽样调查(或称抽查)。我们把从总体中抽取的那部分个体称为样本,样本中包含的个体数称为样本量。
本节主要内容是三角函数的诱导公式中的公式二至公式六,其推导过程中涉及到对称变换,充分体现对称变换思想在数学中的应用,在练习中加以应用,让学生进一步体会 的任意性;综合六组诱导公式总结出记忆诱导公式的口诀:“奇变偶不变,符号看象限”,了解从特殊到一般的数学思想的探究过程,培养学生用联系、变化的辩证唯物主义观点去分析问题的能力。诱导公式在三角函数化简、求值中具有非常重要的工具作用,要求学生能熟练的掌握和应用。课程目标1.借助单位圆,推导出正弦、余弦第二、三、四、五、六组的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题2.通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。
另一方面建立定期会商研判制度。局教育整顿领导小组及办公室建立定期会商研讨机制,每隔 10 天集中研究解决暴露出来的堵点、难点、瘀点问题,落实应对措施和解决方案,确保上请下达及时、沟通协作到位,实现全局“一盘棋”高效运转。三是深挖“3 个问题不足”,排清体内深层毒 县局以“刀刃向内”“刮骨疗毒”的决心和勇气,深入查摆自身问题短板,全面剖析队伍中存在的沉疴痼疾。在“6+2+1”的基础上,深挖问题,总结出队伍中存在的 “ 三个不足 ”(规矩纪律意识不足、业务素质能力不足、规范执法行为不足),共三大类 19 项问题,要求民辅警逐一对照问题短板,深入查摆,通过剖析原因、深挖根源、找准病灶、分类施策、靶向治疗,推进抓源治本。“三个聚焦”推动教育整顿见实效政法队伍教育整顿启动以来,宽甸公安局落实“三个聚焦”,高标准、严要求,推进教育整顿工作走深走实。
四、现场办公下基层。推动现场办公下基层,着力解决好人民群众最关心最直接最现实的问题,是该区对领导干部在主题教育中“重实践”“建新功”的硬性要求。调查研究现场办公。区县级及以上领导在开展调查研究过程中,对现场能解决的问题及时协调解决。截至目前,通过开展调查研究现场办公解决的问题32个。深入企业现场办公。强化服务意识,持续优化营商环境,牢固树立“一切围绕企业、一切为了企业、一切服务企业”的理念,加强与企业的沟通联系,积极做好企业帮扶工作,主动深入挂点企业及在建项目,宣传相关惠企政策,针对企业生产所存在的问题,现场协调解决。截至目前,帮助企业协调解决用电、供水、招工等问题87个。“民事直达”现场办公。结合全区工作实际,研究制定了工作方案,通过“说事”“办事”“回访”三个环节,及时回应和解决广大人民群众急难愁盼问题。以每月15日召开的“民事直达”现场会为抓手,对群众诉求简单、村(社区)有能力解决的小矛盾、小纠纷、小问题,现场及时处理、当场反馈结果,切实做到小事不出村(社区)。截至目前,现场处理相关事情21件,得到了涉事群众的好评。
以“一竿子插到底”的精神,用“望、闻、问、切”四诊法深入开展调研,真正做到把情况摸清、把问题找准、把对策提实。一是“望”实情。领导干部带头深入一线,突出重点望“问题”、望“不足”。二是“闻”民意。以“四不两直”方式深入一线,综合运用座谈访谈、随机走访、问卷调查、统计分析等多种形式,做好“倾听者”,架起“连心桥”,确保有多样的渠道、足够的样本数据、广泛的覆盖面。三是“问”良策。紧紧围绕主题教育,认真开展“三问”,即问计于民、问需于民、问效于民,广泛汲取群众智慧,认真收集梳理意见建议。四是“切”症结。在深入开展调研过程中,把落脚点放在“事要解决”上,高度重视调研成果的运用和转化,以作风转变带动工作转变。对现场调研发现的突出问题进行精准把脉,及时制定问题整改方案,真正做到发现一处整改一处。坚持突出重点、分类推进,积极破解人民群众“急难愁盼”问题。
二是以ZT教育聚力引领服务。组建“走出去”的D员先锋队,在集团安全生产、防汛抢险、防冻抗暑、为民解难等一系列急、难、险、重工作中冲在前,勇于挺身而出,敢于打硬仗,切实推动D建引领下的社会治理和为民服务工作取得实效。三、ZT教育存在的不足及下步打算尽管国企(集团)D委的2023年ZT教育取得了初步的成效,但还存在着一些不足需要加强改进。一是学习形式还不够丰富。目前,还未全面开展D员领导干部到联系支部讲DK、“听老D员讲DK”“诵读悟思想”等活动。二是在工作开展中缺乏特色做法。只按照﹡﹡主题办工作任务清单开展学习教育,与集团亮点工作结合较少,缺乏特色、创新。接下来,国企(集团)D委将紧扣2023年ZT教育阶段要求、步骤安排、规定动作,严把标准关、质量关,进一步加大统筹协调、宣传引导,推出集团特色做法,特别是围绕第一批ZT教育“收官阶段”经验总结和重点难点工作突破,不断推进2023年ZT教育取得新进展新突破。
4.加强师风师德建设,增强教师的责任心和使命感。四、下学期工作计划1.加强教学质量的管理力度,进一步扭转教师的教育观念,进一步加强师德师风建设,使教师能“爱岗敬业,教书育人,为人师表”做四有好老师。2.积极联系兄弟学校联考,横向比较了解自身不足,采取针对性措施以期做得更好。3.扎实推进三教改革,加强课程建设,采用多种培训方法,对不同层次的教师进行多元培训,提高整体教师的业务素质,更新教师理念,从“教教材”到“用教材”的转变;以“教师为中心”向以“学生为中心”的转变;从“教育观”到“学习观”的转变;由“传授型”教师向“科研型”教师的转变。4.加强教师队伍建设,有计划地做好青年教师培养工作。继续做好“青蓝工程”师徒结对工作,各位师傅要关爱徒弟,在“备课、听课、上课、作业”等各个环节上把好关,使之能迅速站稳讲台。继续组织好青年教师教学基本功比赛,让青年教师脱颖而出。
要分类推进,对能改的问题马上改,一时解决不了的要明确具体整改措施和时限,需要长期解决的要划分阶段明确整改目标,紧盯不放、阶梯推进。要联动推进,第一批、第二批主题教育中,有些问题需要机关和基层上下联动共同解决,各负责单位要加强沟通联系,指导下级不等不拖先动起来。同时,对基层反映的问题要积极接纳、主动认领,确保问题解决形成“回路”、形成合力。(四)严抓指导督导。第二批主题教育展开,D委机关必须走在前列、做好表率,为基层立好样板。要力度不减严抓本级,结合D委中心组学习、组织生活,每月拉出一张表统筹推进主题教育,每次集体活动要认真考勤登记,各局室办一人不落做好补课。同时,领导小组办公室和各部委,突出副处级上干部,做好读书情况的检查抽查。要指导基层筹划开局,第二批主题教育展开后,向基层推广机关开展主题教育的有益经验做法,指导基层搞好方案拟制、审核把关,确保梯次有序推进。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。