2、 在游戏中,尝试用筷子夹食物,体验美味食物带来的乐趣,并会分享食 物。3、 激发幼儿使用筷子的乐趣。活动准备:1、 红、黄、蓝、粉四种颜色图案的筷子。2、 四种颜色的插筷筒,三种图案的插筷筒。3、 各种水果切成块。4、 人手一个碟子,一双筷,四个插筷筒。5、 录音机、磁带。重点:配对、分类及使用筷子。难点:使用筷子。活动过程:一、 导入情景1、(出示小熊)小朋友,你们好!今天我想邀请你们去我家做客,你们愿意吗? 2、但是我遇到困难了,你们帮帮我,好吗?二、学习配对1、(出示筷子)你们看,这是什么啊?2、小熊想请我们小朋友给筷子找好朋友,请你们帮他找找好朋友,好吗? 3、请你从后面的桌子上找到一支一模一样的筷子做他的好朋友,好吗? 4、现在请你们从小椅子下面找到筷子,然后去后面找到他的好朋友! 5、幼儿活动――配对。6、 “xxx,请你说说,你为什么找他做好朋友?”(请2-3名幼儿)7、 原来你们是因为他们的颜色和图案一样,才找他们做好朋友的,你们的小眼睛可真亮啊!三、学习分类1、 那你找到筷子的家在哪里吗?2、 <BR><P></P>(出示插筷筒)你们看,这就是筷子的家,它叫插筷筒。它们有什么不同啊?(颜色)这个是什么颜色啊?那这个呢?那就请你把你的筷子送回家,好吗?待会请你们轻轻地把筷子送回家,要有秩序,一个一个放,千万不要把他们送错家了。3、 幼儿活动――分类。4、 请你们看看筷子的家找对了吗?(如找错了,请一名幼儿再找,并说说为什么?)5、 哇,我们小朋友可真棒啊!把红筷子送到了红色的插筷筒里,把黄筷子送到了黄色的插筷筒里,把蓝筷子送到了蓝色的插筷筒里,把粉色的筷子送到了粉色的插筷筒里,真厉害!6、 但是,筷子想找新家了。瞧!这就是他们的新家,他们有什么不同啊?(图案)这个是什么图案?这个呢?对了,一个上面是花花的,一个有蝴蝶,还有一个上面有绿色的图案。7、 现在请你给这些筷子找新家。你喜欢什么样的筷子,你就轻轻地把他从老家拿出来,然后再把他送到新家,好吗?要一个一个有秩序,不然你把筷子弄疼了,他就不理你了。8、 幼儿活动――再次分类。9、 请你们看看筷子的家找对了吗?(如找错了,请一名幼儿再找,并说说为什么?) 10、哇!你们的小眼睛可真亮啊!比孙悟空还厉害啊!
2、通过游戏让幼儿知道轮子是可以滚动的活动准备:PPT、幼儿带来的各种车子活动过程: 一、介绍各种不同数量轮子的车 今天我给你们带来一个神奇的宝贝,你们知道是谁吗? (一)出示两只轮子,引起兴趣1、你们看这是什么?有几只?2、你见过的两只轮子的车吗?是什么车? 小结:两只轮子的车有自行车、电动车、摩托车 过渡:还想接着往下看吗?
合作学习法。以学生为本、小组合作、生生互助的形式来学习,培养学生在合作中取长补短,互帮互助的合作精神。 同组一起把生字读两遍。然后互相检查看看是否读准字音。并说说自已是怎样记住哪个字的,让学生感受合作学习的快乐。
方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.探究点三:工程问题一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?解析:首先设乙队还需x天才能完成,由题意可得等量关系:甲队干三天的工作量+乙队干(x+3)天的工作量=1,根据等量关系列出方程,求解即可.解:设乙队还需x天才能完成,由题意得:19×3+124(3+x)=1,解得:x=13.答:乙队还需13天才能完成.方法总结:找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作效率×工作时间=工作总量,当题中没有一些必须的量时,为了简便,应设其为1.三、板书设计“希望工程”义演题目特点:未知数一般有两个,等量关系也有两个解题思路:利用其中一个等量关系设未知数,利用另一个等量关系列方程
从而为列方程找等量关系作了铺垫.环节2中的表格发给每个小组,为增强小组讨论结果的展示起到了较好的作用.环节3中通过让学生自己设计表格为讨论的得出起到辅助作用.2.相信学生并为学生提供充分展示自己的机会本节课的设计中,通过学生多次的动手操作活动,引导学生进行探索,使学生确实是在旧知识的基础上探求新内容,探索的过程是没有难度的任何学生都会动手操作,每个学生都有体会的过程,都有感悟的可能,这种形式让学生切身去体验问题的情景,从而进一步帮助学生理解比较复杂的问题,再把实际问题抽象成数学问题.3.注意改进的方面本节课由于构题新颖有趣,所以一开始就抓住了学生的求知欲望,课堂气氛活跃,讨论问题积极主动.但由于学生发表自己的想法较多,使得教学时间不能很好把握,导致课堂练习时间紧张,今后予以改进.
1:甲、乙、丙三个村庄合修一条水渠,计划需要176个劳动力,由于各村人口数不等,只有按2:3:6的比例摊派才较合理,则三个村庄各派多少个劳动力?2:某校组织活动,共有100人参加,要把参加活动的人分成两组,已知第一组人数比第二组人数的2倍少8人,问这两组人数各有多少人?目的:检测学生本节课掌握知识点的情况,及时反馈学生学习中存在的问题.实际活动效果:从学生做题的情况看,大部分学生都能正确地列出方程,但其中一部分人并不能有意识地用“列表格”法来分析问题,因此,教师仍需引导他们能学会用“列表格”这个工具,有利于以后遇上复杂问题能很灵活地得到解决.六、归纳总结:活动内容:学生归纳总结本节课所学知识:1. 两个未知量,两个等量关系,如何列方程;2. 寻找中间量;3. 学会用表格分析数量间的关系.
解:设截取圆钢的长度为xmm.根据题意,得π(902)2x=131×131×81,解方程,得x=686.44π.答:截取圆钢的长度为686.44πmm.方法总结:圆钢由圆柱形变成了长方体,形状发生了变化,但是体积保持不变.“变形之前圆钢的体积=变形之后长方体的体积”就是我们所要寻找的等量关系.探究点三:面积变化问题将一个长、宽、高分别为15cm、12cm和8cm的长方体钢坯锻造成一个底面是边长为12cm的正方形的长方体钢坯.试问:是锻造前的长方体钢坯的表面积大,还是锻造后的长方体钢坯的表面积大?请你计算比较.解析:由锻造前后两长方体钢坯体积相等,可求出锻造后长方体钢坯的高.再计算锻造前后两长方体钢坯的表面积,最后比较大小即可.解析:设锻造后长方体的高为xcm,依题意,得15×12×8=12×12x.解得x=10.锻造前长方体钢坯的表面积为2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),锻造后长方体钢坯的表面积为2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).
故直线l2对应的函数关系式为y=52x.故(-2,-5)可看成是二元一次方程组5x-2y=0,2x-y=1的解.(3)在平面直角坐标系内画出直线l1,l2的图象如图,可知点A(0,-1),故S△APO=12×1×2=1.方法总结:此题在待定系数法的应用上有所创新,并且把一次函数的图象和三角形面积巧妙地结合起来,既考查了基本知识,又不局限于基本知识.三、板书设计利用二元一次方程组确定一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式:y=kx+b(k≠0);2.将已知条件代入上述表达式中得k,b的二元一次方程组;3.解这个二元一次方程组得k,b的值,进而得到一次函数的表达式.通过教学,进一步理解方程与函数的联系,体会知识之间的普遍联系和知识之间的相互转化.通过对本节课的探究,培养学生的观察能力、识图能力以及语言表达能力.
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
因为x3表示手机部数,只能为正整数,所以这种情况不合题意,应舍去.综上所述,商场共有两种进货方案.方案1:购甲型号手机30部,乙型号手机10部;方案2:购甲型号手机20部,丙型号手机20部.(2)方案1获利:120×30+80×10=4400(元);方案2获利:120×20+120×20=4800(元).所以,第二种进货方案获利最多.方法总结:仔细读题,找出相等关系.当用含未知数的式子表示相等关系的两边时,要注意不同型号的手机数量和单价要对应.三、板书设计增收节支问题分析解决列二元一次方程,组解决实际问题)增长率问题利润问题利用图表分析等量关系方案选择通过问题的解决使学生进一步认识数学与现实世界的密切联系,乐于接触生活环境中的数学信息,愿意参与数学话题的研讨,从中懂得数学的价值,逐步形成运用数学的意识;并且通过对问题的解决,培养学生合理优化的经济意识,增强他们的节约和有效合理利用资源的意识.
答:书包单价92元,随身听单价360元。最优化决策:聪明的Mike想了想回答正确后便同爸爸去买礼物,恰好赶上商家促销,人民商场所有商品打八折销售,家乐福全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家购买看中的这两样物品,你能帮助他选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?提示:书包单价92元,随身听单价360元。2)在人民商场购买随声听与书包各一样需花费现金452× =361.6(元)∵ 361.6<400 ∴可以选择在人民商场购买。在家乐福可先花现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,共花现金360+2=362(元)。因为362<400,所以也可以选择在家乐福购买。因为362>361.6,所以在人民商场购买更省钱。第五环节:学习反思;(5分钟,学生思考回答,不足的地方教师补充和强调。)
四.知识梳理谈谈用一元二次方程解决例1实际问题的方法。五、目标检测设计1.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,则每个小长方形的面积为( ).【设计意图】发现几何图形中隐蔽的相等关系.2.镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.【设计意图】考查学生的审题能力及用一元二次方程模型解决简单的图形面积问题.
∴此方程无解.∴两个正方形的面积之和不可能等于12cm2.方法总结:对于生活中的应用题,首先要全面理解题意,然后根据实际问题的要求,确定用哪些数学知识和方法解决,如本题用方程思想和一元二次方程的根的判定方法来解决.三、板书设计列一元二次方程解应用题的一般步骤可以归结为“审,设,列,解,检,答”六个步骤:(1)审:审题要弄清已知量和未知量,问题中的等量关系;(2)设:设未知数,有直接和间接两种设法,因题而异;(3)列:列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式表示相等关系中的各个量,即可得到方程;(4)解:求出所列方程的解;(5)检:检验方程的解是否正确,是否保证实际问题有意义;(6)答:根据题意,选择合理的答案.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型.通过学生创设解决问题的方案,增强学生的数学应用意识和能力.
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
教学目标1、通过教学,学生懂得应用加法运算定律可以使一些分数计算简便,会进行分数加法的简便计算.2、培养学生仔细、认真的学习习惯.3、培养学生观察、演绎推理的能力.教学重点整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便.教学难点整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便.教学过程设计一、复习准备(演示课件:整数加法运算定律推广到分数加法)下载1.教师:整数加法的运算定律有哪几个?用字母怎样表示?板书:a+b=b+a(a+b)+c=a+(b+c)2.下面各等式应用了什么运算定律?①25+36=36+25 ②(17+28)+72=17+(28+72)③6.2+2.3=2.3+6.2 ④(0.5+1.6)+8.4=0.5+(1.6+8.4)教师:加法交换律和结合律适用于整数和小数,是否也适用于分数加法呢?这节课我们就一起来研究.二、学习新课(继续演示课件:整数加法运算定律推广到分数加法)下载1.出示:下面每组算式的左右两边有什么关系?
观察实验视频实验验证师:其实大家完全可以利用身边的器材来验证。实验1、用弹簧秤挂上钩码,然后迅速上提和迅速下放。现象:在钩码被迅速上提的一瞬间,弹簧秤读数突然变大;在钩码被迅速下放的一瞬间,弹簧秤读数突然变小。师:迅速上提时弹簧秤示数变大是超重还是失重?迅速下放时弹簧秤示数变小是超重还是失重?生:迅速上提超重,迅速下放失重。体会为何用弹簧秤测物体重力时要保证在竖直方向且保持静止或匀速实验2、学生站在医用体重计上,观察下蹲和站起时秤的示数如何变化?在实验前先让同学们理论思考示数会如何变化再去验证,最后再思考。(1)在上升过程中可分为两个阶段:加速上升、减速上升;下蹲过程中也可分为两个阶段:加速下降、减速下降。(2)当学生加速上升和减速下降时会出现超重现象;当学生加速下降和减速上升时会出现失重现象;(3)出现超重现象时加速度方向向上,出现失重现象时加速度方向向下。完全失重
老师们、同学们:早上好!当今的教育出现了一些问题,但这些问题的出现归结为一点,就是人文精神的失落。人文精神,简单地说就是现在人们常说的“以人为本”,也就是说,要把人放在最重要的位置上,要尊重人的价值。人身上有三种东西是最宝贵的:生命、头脑和灵魂。与生命相应的教育除了狭义的体育教育,还要扩大到生命教育。今天,我和大家交流的话题就是:体育教育与生命教育。很多研究“运动与学习成绩关系”的成果都表明每天参加一小时体育锻炼的孩子学习成绩比较好。当有记者问及“全美最佳教师”雷夫教育孩子的秘诀,他说,秘诀无非有二:一是艺术引领;二是打棒球。众所周知,雷夫班上的孩子个个是棒球高手。北京汇文中学“Astrongmindinastrongbody.”(健全的头脑只寓于健康的身体之中。)的教育信条影响了一代代汇文人。清华附小窦桂梅校长提出的“体育应为小学核心课程”的理念也给了我深深地启发。现在学校的建设还在不断地完善中,近期,学校将配备上篮球架和乒乓球台,同学们还可以自带跳绳来学校。学校也会逐渐开发一些体育项目供大家进行体育活动。学校将通过体育设施的完善,体育活动的开发与实践来促进体育教育的开展。
活动三:用自己的创意和行动为家庭作贡献学生阅读教材第44页,看看图中的创意员为家庭出了哪些“好点子”,再想想自己家是不是也缺少些什么。然后,小组合作出主意,为了让每一个同学家更好,针对缺少的东西,想一些“好点子”。再全班展示交流,教师进行总结评价。板书:自己的创意和行动。设计意图:引导学生在讨论交流的过程中,给家里出一些“好点子”,做一些力所能及的事。环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:布置作业,课外延伸生活中,多为家里做力所能及的事,为家庭做贡献。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。
同学们,我们现在的生活如此便利、幸福,你们知道以前的生活是什么样的吗?让我们乘坐时光穿梭机,让时光倒流,穿越到上个世纪六七十年代,去 看看我们的爷爷奶奶、爸爸妈妈的生活吧!播放视频:1. 小组内交流:你看到了什么?2. 从你的爷爷奶奶、爸爸妈妈口中你还了解到过去生活条件是什么样的?(三)合作交流,追根究底小组交流合作探究:我们的家庭生活真是发生了翻天覆地的变化呀!同学们,你们想过没有,为什么会发生这么大的变化呢?小结:家乡的生活之所以有这么大的变化,一方面是国家改革开放和富民强国的政策指引,另一方面是一代又一代家乡人民艰苦奋斗,努力创造的结果。(板书:强国富民艰苦奋斗)(四)拓展延伸,情感升华科技在发展, 时代在前进, 我们的家乡跨上了时代的列车,正在飞速发展, 家乡的未来一定会更加美好,更加辉煌,作为小主人的你们,想为家乡做点什么呢 ?请和你的小组成员一起完成《家乡发展建议书》。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。