提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

中学阳光教育特色创建制度

  • 【高教版】中职数学拓展模块:2.2《双曲线》教学设计

    【高教版】中职数学拓展模块:2.2《双曲线》教学设计

    教学准备 1. 教学目标 知识与技能掌握双曲线的定义,掌握双曲线的四种标准方程形式及其对应的焦点、准线.过程与方法掌握对双曲线标准方程的推导,进一步理解求曲线方程的方法——坐标法.通过本节课的学习,提高学生观察、类比、分析和概括的能力.情感、态度与价值观通过本节的学习,体验研究解析几何的基本思想,感受圆锥曲线在刻画现实和解决实际问题中的作用,进一步体会数形结合的思想.2. 教学重点/难点 教学重点双曲线的定义及焦点及双曲线标准方程.教学难点在推导双曲线标准方程的过程中,如何选择适当的坐标系. 3. 教学用具 多媒体4. 标签

  • 高教版中职数学基础模块下册:8.4《圆》教学设计

    高教版中职数学基础模块下册:8.4《圆》教学设计

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 8.4 圆(二) *创设情境 兴趣导入 【知识回顾】 我们知道,平面内直线与圆的位置关系有三种(如图8-21): (1)相离:无交点; (2)相切:仅有一个交点; (3)相交:有两个交点. 并且知道,直线与圆的位置关系,可以由圆心到直线的距离d与半径r的关系来判别(如图8-22): (1):直线与圆相离; (2):直线与圆相切; (3):直线与圆相交. 介绍 讲解 说明 质疑 引导 分析 了解 思考 思考 带领 学生 分析 启发 学生思考 0 15*动脑思考 探索新知 【新知识】 设圆的标准方程为 , 则圆心C(a,b)到直线的距离为 . 比较d与r的大小,就可以判断直线与圆的位置关系. 讲解 说明 引领 分析 思考 理解 带领 学生 分析 30*巩固知识 典型例题 【知识巩固】 例6 判断下列各直线与圆的位置关系: ⑴直线, 圆; ⑵直线,圆. 解 ⑴ 由方程知,圆C的半径,圆心为. 圆心C到直线的距离为 , 由于,故直线与圆相交. ⑵ 将方程化成圆的标准方程,得 . 因此,圆心为,半径.圆心C到直线的距离为 , 即由于,所以直线与圆相交. 【想一想】 你是否可以找到判断直线与圆的位置关系的其他方法? *例7 过点作圆的切线,试求切线方程. 分析 求切线方程的关键是求出切线的斜率.可以利用原点到切线的距离等于半径的条件来确定. 解 设所求切线的斜率为,则切线方程为 , 即 . 圆的标准方程为 , 所以圆心,半径. 图8-23 圆心到切线的距离为 , 由于圆心到切线的距离与半径相等,所以 , 解得 . 故所求切线方程(如图8-23)为 , 即 或. 说明 例题7中所使用的方法是待定系数法,在利用代数方法研究几何问题中有着广泛的应用. 【想一想】 能否利用“切线垂直于过切点的半径”的几何性质求出切线方程? 说明 强调 引领 讲解 说明 引领 讲解 说明 观察 思考 主动 求解 思考 主动 求解 通过例题进一步领会 注意 观察 学生 是否 理解 知识 点 50

  • 【高教版】中职数学拓展模块:2.1《椭圆》优秀教学设计

    【高教版】中职数学拓展模块:2.1《椭圆》优秀教学设计

    本人所教的两个班级学生普遍存在着数学科基础知识较为薄弱,计算能力较差,综合能力不强,对数学学习有一定的困难。在课堂上的主体作用的体现不是太充分,但是他们能意识到自己的不足,对数学课的学习兴趣高,积极性强。 学生在学习交往上表现为个别化学习,课堂上较为依赖老师的引导。学生的群体性小组交流能力与协同讨论学习的能力不强,对学习资源和知识信息的获取、加工、处理和综合的能力较低。在教学中尽量分析细致,减少跨度较大的环节,对重要的推导过程采用板书方式逐步进行,力求让绝大多数学生接受。 1.理解椭圆标准方程的推导;掌握椭圆的标准方程;会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标. 2.通过椭圆图形的研究和标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用。 1.让学生经历椭圆标准方程的推导过程,进一步掌握求曲线方程的一般方法,体会数形结合等数学思想;培养学生运用类比、联想等方法提出问题. 2.培养学生运用数形结合的思想,进一步掌握利用方程研究曲线的基本方法,通过与椭圆几何性质的对比来提高学生联想、类比、归纳的能力,解决一些实际问题。 1.通过具体的情境感知研究椭圆标准方程的必要性和实际意义;体会数学的对称美、简洁美,培养学生的审美情趣,形成学习数学知识的积极态度. 2.进一步理解并掌握代数知识在解析几何运算中的作用,提高解方程组和计算能力,通过“数”研究“形”,说明“数”与“形”存在矛盾的统一体中,通过“数”的变化研究“形”的本质。帮助学生建立勇于探索创新的精神和克服困难的信心。

  • 人教版高中数学选修3排列与排列数教学设计

    人教版高中数学选修3排列与排列数教学设计

    4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).

  • 人教版高中数学选修3超几何分布教学设计

    人教版高中数学选修3超几何分布教学设计

    探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.

  • 人教版高中数学选修3二项式定理教学设计

    人教版高中数学选修3二项式定理教学设计

    二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√

  • 人教版高中数学选修3全概率公式教学设计

    人教版高中数学选修3全概率公式教学设计

    2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?

  • 人教版高中数学选修3条件概率教学设计

    人教版高中数学选修3条件概率教学设计

    (2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.

  • 人教版高中数学选修3正态分布教学设计

    人教版高中数学选修3正态分布教学设计

    3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.

  • 人教版高中数学选修3组合与组合数教学设计

    人教版高中数学选修3组合与组合数教学设计

    解析:因为减法和除法运算中交换两个数的位置对计算结果有影响,所以属于组合的有2个.答案:B2.若A_n^2=3C_(n"-" 1)^2,则n的值为( )A.4 B.5 C.6 D.7 解析:因为A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故选C.答案:C 3.若集合A={a1,a2,a3,a4,a5},则集合A的子集中含有4个元素的子集共有 个. 解析:满足要求的子集中含有4个元素,由集合中元素的无序性,知其子集个数为C_5^4=5.答案:54.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?解:(方法一)我们把从共线的4个点中取点的多少作为分类的标准:第1类,共线的4个点中有2个点作为三角形的顶点,共有C_4^2·C_8^1=48(个)不同的三角形;第2类,共线的4个点中有1个点作为三角形的顶点,共有C_4^1·C_8^2=112(个)不同的三角形;第3类,共线的4个点中没有点作为三角形的顶点,共有C_8^3=56(个)不同的三角形.由分类加法计数原理,不同的三角形共有48+112+56=216(个).(方法二 间接法)C_12^3-C_4^3=220-4=216(个).

  • XX学年度第一学期开学第一周国旗下讲话稿

    XX学年度第一学期开学第一周国旗下讲话稿

    可爱的同学们、可敬的老师们:大家好!  结束了愉快的暑假生活,今天我们又聚集在xx小学校园里,迎接最有希望和生机的XX学年第一学期。今天是新一学期开学的第一天,我们在这里举行新学期升旗仪式,借此机会,我代表咱们学校,向全校师生致以最诚挚的祝福,祝全体同学和老师在新的一学期里身心健康、工作顺利、学习进步、梦想成真。  本学期,有六位新老师和一年级六十六位新同学加入了xx小学这个大家庭,请大家用热烈的掌声,对新老师和新同学表示最热烈的欢迎!  过去的一学年,在全体师生的共同努力下,学校取得了不少成绩,获得了不少荣誉。这是全体学生刻苦努力、勤奋学习的结果,更是老师们辛勤耕耘、用心浇灌的结果,它必将鼓舞我们满怀信心、昂首阔步踏上新学年的阳光大道!  同学们,面对徐徐升起的五星红旗,你们在想什么呢?作为一个小学生,如何使自己成为家庭的好孩子、学校的好学生、社会的好少年呢?将来如何更好地适应新形势的需求,把自己塑造成为符合时代发展的、能为社会作贡献的人才呢?

  • 大班体育教案:民间体育游戏活动设计—跳竹竿

    大班体育教案:民间体育游戏活动设计—跳竹竿

    二、活动目标:1、利用纸棒进行活动,学习跳竹竿游戏,发展弹跳能力。2、体验与同伴合作游戏带来的快乐。3、愿意积极想办法解决活动中遇到的困难。三、活动准备:经验准备:幼儿观看过录像物质准备:人手一根纸棒(长度为1米)。录音机,磁带。四、活动过程:1、开始部分:幼儿随音乐利用纸棒进行队列练习。导语:今天天气真不错,我们骑着马出去玩玩吧!(幼儿随音乐的变化“骑马”变双圆----大圆----小圆---- “坐马车” )反思:活动开始部分设计了随音乐利用纸棒进行队列练习在这一环节中由两队“骑马”变双圆----变小圆----合作组合“坐马车”体现了动静交替的原则,让幼儿初步尝试了与同伴合作的快乐,同时也为下一个环节奠定了基础。2、基本部分:(1)利用纸棒进行“一棒多玩”导语:纸棒可以和我们玩坐马车的游戏,还可以和我们玩什么游戏呢?我们一起来试试,可以自己玩,也可以和小伙伴一起玩。(幼儿四散游戏)队形:两路纵队(见附图)(2)学习“跳竹竿”游戏A、讲解游戏玩法导语:刚才小朋友用纸棒玩了许多游戏,今天老师要和大家用纸棒玩一个新游戏——跳竹竿,这个游戏可以三个或四个小朋友一起玩,其中两个小朋友手拿竹竿面对面跪下,用竹竿同时分合敲击,另一个小朋友在中间看准竹竿的分合跳进或跳出。大家可以自己选择小伙伴一起试一试。队形:梯形队(见附图)(3)幼儿自由组合尝试玩“跳竹竿”游戏队形:四散(4)对幼儿在游戏过程中出现的情况及时进行指导(合作、交往方面)导语:你刚才和谁一起玩的?你们是怎么跳竹竿的?队形:梯形队(见附图)(5)鼓励幼儿创造性地玩“跳竹竿”游戏,师生共同参与。

  • 大班体育教案:快乐的户外区域体育——探险寻宝

    大班体育教案:快乐的户外区域体育——探险寻宝

    2、增强规则意识:根据指示箭头有序活动,不随便插队。3、敢于挑战困难,勇敢坚强。4、感受运动的快乐,愉悦身心。(一)平衡区——过鳄鱼桥活动目标:1、在梯子、轮胎、摇板等组合器械上行走,提高平衡能力。2、克服困难,勇敢前进。

  • 精编学校开展团建活动个人心得体会参考范文

    精编学校开展团建活动个人心得体会参考范文

    第一天,人员分为三组进行游戏比拼,每一个游戏都需要脑力、体力以及团队合作,尤其是最后一项游戏—要求团队七名成员在八分钟时间内完成五项游戏项目。当时的情形依旧历历在目,犹记得在练习时,我们队在让排球在鼓面上掂六次这一项一直未能成功。在正式比赛时,我们吸取前一队的经验但是依旧未能成功,后来找到了适合自己队的一种方法终于克服了这一项目,在八分钟内完成了所有项目。  第二天,全体人员徒步穿越大峡谷。非常触动我的是,前半路程并不好走,需要踩着石头通过一片又一片的有水区域。穿凉鞋的同事便义无反顾地下到水中,帮忙搀扶着其他人员通过。此外,在危险难过的路段总会有同事伸出援手。同时,虽然天气炎热,但是无一人中途退出。

  • 精编学校开展团建活动个人心得体会参考范文

    精编学校开展团建活动个人心得体会参考范文

    团建活动所教会我们的不仅仅是在游戏中。今年公司迎来了大发展,成立了综合设计咨询分公司。对于我们综合设计咨询分公司来说是发展的重要时期,需要所有员工团结起来,凝心聚力,推动公司的发展。有竞争才有动力,在竞争的压力下,会有更大的动力去做好每一件事情,去激发更大的潜能,最大限度地发挥自己的执行力。同时,在工作中,要借鉴他人的经验,学会创新。不管遇到什么样的挑战,要迎难而上,坚持到底,挑战终将变为我们前进路上的垫脚石。最后,无论在生活还是工作中,同事之间要互帮互助,在和谐的氛围下共创综合设计咨询分公司美好的未来。

  • 第十周国旗下讲话稿:学守纪讲规范,建设文明校园

    第十周国旗下讲话稿:学守纪讲规范,建设文明校园

    尊敬的老师们,亲爱的同学们:大家上午好!今天我国旗下讲话的题目是《学守纪讲规范,建设文明校园》。同学们,当你们迎着朝阳踏进校园,一定希望展现在自己面前的是清洁的环境、明亮的教室;一定希望与自己相处的是文明守纪、团结友爱的同学;一定希望自己能在和谐文明的校园里健康、快乐地成长。赏心悦目的环境可以使人心旷神怡,和谐文明的校园能塑造美好的心灵。然而,在我们校园,还存在着一些不和谐的音符,每天同学们清扫干净后,总有些不自觉的同学把垃圾随手乱丢;课间有的同学大声喧哗吵闹,上下楼梯推搡拥挤……同学们,和谐、文明的校园需要我们每一个同学去创造,更需要我们用自己的一言一行来构建。当老师和同学们从你身边经过时,你点头微笑、致以问候;当你走进教室,轻轻推开关着的门;当地面有垃圾时,你弯腰拾起……

  • 大班语言《绿色的和灰色的》说课稿

    大班语言《绿色的和灰色的》说课稿

    二.说活动目标《纲要》指出,发展幼儿语言的重要途径是通过互相渗透的各个领域的教育,在丰富多彩的活动中扩展幼儿经验,提供促进语言发展的条件,根据大班幼儿的内容特点,我分别从认知、能力、情感三方面制定了活动目标。1.通过多媒体教学,帮助幼儿理解诗歌内容,懂得同伴间要友爱,激发热爱绿色,保护向往绿色的情感。2.培养幼儿乐意欣赏不同体裁,不同风格的文学作品的兴趣,初步了解叙事诗。3.幼儿在感知作品的基础上,初步体验诗歌中绿色、灰色所代表的含义。重点:帮助幼儿理解诗歌内容难点:初步体验诗歌中绿色、灰色所代表的含义三.说活动准备为了更好的完成本次活动目标,我准备了以下材料1.制作与诗歌内容相关的课件2.幼儿人手一面绿旗、灰旗3.诗歌表演的场地布置(森林、鸟窝、小溪、棕榈叶)4.录音机、磁带、小红花若干四.说活动过程根据大班幼儿年龄特点,我设计了以下5个环节1.整体欣赏诗歌《绿色的和灰色的》“今天老师给小朋友带来了一首诗,你们想听吗?现在我们来听一听,看一看”(屏幕显示诗歌内容、图像、配音)2.分段欣赏诗歌,理解诗歌情节,初步体验情感“诗歌里都说了些什么呢?让我们一起来看一看。”(1)“小朋友你觉得这儿的环境怎么样,心里有什么感觉?”(第一段)(2)让幼儿感受狐狸的狡猾,小鸟的善良。(第二段)(3)让幼儿体验小兔的机智、聪明(第三、四段)(4)让幼儿体验狐狸的失望3.表演诗歌,加深理解,进一步体验情感(1)整体欣赏诗歌一遍“现在我们把诗歌再欣赏一次,如果你喜欢,可以轻轻地跟着说(2)让幼儿分组表演诗歌“请你先和好朋友轻轻商量分配好角色,把小动物们说的话表演出来,看谁表演的最好(3)请表现突出的幼儿上台表演4.迁移经验,玩游戏(1)讨论:“小兔安全的经过了草地,要想谢谢大家给它的帮助,那是谁帮助了它呢?”问“这么多的绿色帮助了小兔,你喜欢绿色吗?”(2)玩游戏:看画面,举小旗5.在歌曲《绿色的家》中结束活动

  •  全国助残日国旗下讲话稿:特殊的群体,特别的关爱

    全国助残日国旗下讲话稿:特殊的群体,特别的关爱

    各位老师、各位同学:上午好!今天,我国旗下讲话的主题是《特殊的群体,特别的关爱》。1990年《中华人民共和国残疾人保障法》规定:每年5月的第三个星期日为全国助残日。昨天,是我国第24个“全国助残日”。同学们,当你每天迎着朝阳,走进景城的校门时,你可曾想到在我们周围有一群人却要依靠冰冷的轮椅度过人生的每一天;当你和同学们沐浴在阳光体育的快乐中时,你可曾想起你周围还有一群人却连仰望蓝天也是一种奢望;当你和小伙伴在音乐中感受美妙的音符时,你可曾想到在我们身边还有一群人永远生活在无声的世界中……他们就是我们所说的残疾人,他们带着残缺的身体在这个世界,忍受着常人无法体会的痛苦,但他们没有向命运低头,而是顽强地生活着。作为健康人的我们,又为他们做过什么呢?曾经在一本杂志上读到过一篇关于国外孩子的假期生活,他们的博物馆里不仅有各种科技展览馆,还专门有一个情感体验馆,孩子们需要蒙上眼睛,或是坐在轮椅上,在里面呆上半天或一天,做游戏,学习,吃饭,体验残疾人的生活艰难,这样以后就会更加理解和尊重残疾人。

  • 关于镇街中层及以下干部队伍建设的调研报告范文

    关于镇街中层及以下干部队伍建设的调研报告范文

    (一)结构不够优。一是年龄结构不合理,编内人员(公务员和事业编制人员)年龄在*周岁以下的只有*人,占编内人员*%。二是学历偏低,学历为全日制大专及以下的有*人,占*%,硕士研究生只有*人;三是专业化水平不高,具有专业技术职称的只有*人,占比*%,其中工程师职称只有*人,难以适应专业化、高质量工作的需求。作为中坚力量的*名中层干部中,大专及以下学历占*%,专业型干部不足*%,编外人员占一半以上。

  • 九年级上册道德与法治建设法治中国2作业设计

    九年级上册道德与法治建设法治中国2作业设计

    6.新冠肺炎疫情发生以来,中央强调,在疫情防控工作中,要坚决反对形式主义、 官僚主义, 让基层干部把更多精力投入到疫情防控第一线。这样要求 ( )①有利于政府工作人员依法行政②有利于政府履行职责,维护广大人民群众的根本利益③有利于形成良好的社会风气④警示人类必须坚持走可持续发展的道路A. ①②③ B. ①②④ C. ①③④ D. ②③④ 7.中央纪委监察部网站(现中央纪委国家监委网站)开通纠正“四风”(形式主义、 官僚主义、 享乐主义和奢靡之风) 监督举报直通车,引导网友积极举报各种公款 吃喝、公款旅游等“四风”问题。这一做法 ( )①扩大了我国公民的政治经济权利②有利于政府依法行政,实现国家长治久安③有利于提高我国公民的民主监督意识④有利于国家机关及其工作人员勤政廉洁A. ①②③ B. ①②④ C. ①③④ D. ②③④ 8.《孟子 ·离娄上》有言:“徒善不足以为政, 徒法不能以自行。”

上一页123...697071727374757677787980下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。