(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
操作过程:(1)做这个游戏可以根据不同的内容采用不同的形式。开火车可以横着开,也可以竖着开,还可以开双轨列车。(2)导语:小朋友,我们一起来开小火车,看哪一列火车最先开到我们首都北京。开火车时,其他孩子学着很轻很轻地发火车开动的“呜——咔嚓、咔嚓” 的声音,有利于营造气氛,激发学生的学习兴趣。(3)例,教师在复习学过的生字时,可以用卡片先出示一个生字,然后让一组学生轮着读生字字音、组词师:“请第一组开双轨列车,先读读字音,再给它找个朋友。” 谁说错了,火车就停下。师:“哪个修理员来帮着修理一下?” 选其他组的修理员修理(重读字音、字母),修理好了继续开。第二种游戏名称:找朋友适用范围:复习字的偏旁、结构,正反义词,以及声母与韵母的相拼。 游戏准备:有生字的金牌,花形卡片 操作过程:(1)导语:小朋友,你想找到你的好朋友吗?让我们来做一个找朋友的游戏。(2)如,第一册《识字4》,在学了生字后,请学生找相同偏旁的字做你的好朋友,就可以这样操作。一生拿一张卡片“打”,说:“找呀找,找呀找,谁是我的好朋友?” 拿卡片“拔”和“拍”的同学就都可以上前说:“我是你的好朋友。” 大家说:“对对对,‘拔’是‘打’的好朋友。”最后大家一起读读两位好朋友手中的字,说说这两个字的偏旁。又如,教师可以做几个金牌,金牌上贴有生字“跑”“跳”,大家一起拍手说:“找呀找,找呀找,找到一个好朋友。” 挂金牌的同学看一看读一读生字,与挂有相同偏旁字的小朋友手拉手,成为好朋友。找对了,大家说:“对对对,你们是一对好朋友。” 找错了,大家说:“错错错,赶快再去找一找。” (3)教师也可以准备一些声母或韵母相同的生字,用金牌的形式挂在大家胸口,先读一读,然后让小朋友选择字音中相同部分的字手拉手,交朋友。还可以教师准备字型结构相同的或能组成词语的两个生字,准备一些声母和韵母,让学生读后手拉手交朋友。(4)这样在游戏中能激发学生的学习兴趣,在游戏中巩固所学知识。
教学过程:一、教师谈话导入:1、师:同学们,在你们的心中一定有一个美好的未来梦想,和大家一起来分享一下你的美好梦想吧。2、教师小结,导入新课,出示课题——《我的未来不是梦》。二、歌曲学唱:1、聆听范唱,教师课件出示思考题: A、这首歌曲给你什么样的感受? B、这首歌曲运用了什么样的演唱方法?2、教师播放范唱,指导学生思考。3、学生回答思考题,教师总结通俗歌曲的演唱特点:通俗唱法也称为流行唱法,具有通俗性,自娱性等艺术特色。擅长抒了以个人为主体的内心情感。通俗作品通俗易懂,风格轻松愉快,活泼新颖。多用自然嗓音,音域一般不宽,吐字清晰,亲切随意。4、出示乐谱,指导学生看谱,强调歌曲结尾部分的演唱方法。5、复习弱起节奏和弱起小节知识,找出曲谱中弱起小节,划拍指导学生准确起唱。6、播放现场演唱视频,观看中要求学生注意弱起小节和二分休止符以及多处有休止符地方的演唱方法。7、教师小结通俗歌曲的演唱方法。8、随伴奏演唱,出现问题教师进行个别纠正。
一、【引入新课】师:同学们,请大家欣赏一段视频,说一说这个乐队的演奏形式有何特点,都有哪些乐器?(播放纵贯线《童年》现场视频)生:这是纵贯线乐队,主要是电声伴奏,主要乐器有主要由架子鼓、电吉他、电贝司和电子合成器组成。师:今天我们就来学一首由电声乐队伴奏的歌曲《我的未来不是梦》。 二【新课学习】1、师:我们来看一下这首歌曲,你知道他的原唱是谁吗?让我们来看一下张雨生的简介:张雨生:台湾歌手,有台湾“音乐魔术师”之称,国立政治大学外交系学士。成名曲为《我的未来不是梦》对他而言,唱歌是一种情感的释放,创作则是理现。1995年开始张雨生为其他歌手担任创作人,此后分别为伊能静、陶晶莹、张惠妹等人制作专辑。其中他为张惠妹制作的《姐妹》让名不见经传的山地女孩因此一炮而红,成为台湾的天后。1997年5月制作《Bad boy》专辑,标志其驾驭音乐的能力达到了顶峰。10月20日不幸发生车祸于11月12日逝世,年仅31岁。
教学目标:1、学生能在欣赏多首歌曲的过程中说出具有民族、通俗和美声演唱者特有的不同风格和不同的演唱特点,并能简单地模仿三种具有不同歌唱特点的歌唱。2、欣赏歌曲《我的未来不是梦》时,学生能用简洁的语言归纳通俗唱法的演唱特点,并能用齐唱的方式表现这首歌曲。教学过程:1、完整地跟着音乐学唱第一遍。提问:音乐共有两部分组成,分别有什么特点?在演唱的过程中应该唱出怎样的特点?2、分段唱一唱:第一部分要注意弱起小节的节奏和每句末的延长音时值要唱足;第二部分要注意每句末的休止节奏,同时演唱方法与第一部分形成对比,有平稳、舒缓的歌唱转换成有激情的歌唱,并且随着音乐的进行推向高潮!思考:在齐唱过程中应该注意什么? 3、再次完整地跟着音乐齐唱全曲。在学生歌唱过程中建议老师用钢琴伴奏,找一个合适学生歌唱的调式弹伴奏,杜绝用低八度歌唱。
1、有利于维护国家的统一和安全民族区域自治以领土完整、国家统一为前提和基础,是国家集中统一领导与民族区域自治的有机结合。增强了中华民族的凝聚力,使各族人民特别是少数民族人民把热爱民族与热爱祖国的感情结合起来,自觉担负起捍卫祖国统一、保卫边疆的光荣职责。2、有利于保障少数民族人民当家作主的权利民族自治地方充分享有自治权利。自主管理本地内部事务,满足了少数民族人民积极参加国家政治生活的愿望。3、有利于发展平等、团结、互助的社会主义新型民族关系民族自治地方以一个或几个少数民族为主体,同时包括当地居住的汉族和其他少数民族,各族人民和各族干部之间联系更加密切,逐步消除了历史上遗留下来的民族隔阂。4、有利于促进社会主义现代化事业的发展自治机关能够结合本民族、本地区特点,把少数民族的特殊利益与国家的整体利益协调起来,充分发挥各自的特长和优势,调动各族人民参加国家建设的积极性、创造性。
一、教材分析普通高中思想政治课程标准及浙江省普通高中新课程实验学科教学指导意见对本课时内容做了如下规定:基本要求:知道我国是统一的多民族国家;理解我国处理民族关系的三项基本原则及其相互关系;懂得处理民族关系的重要性,自觉履行维护国家统一和民族团结的义务。发展要求:联系国内外的具体事例,加深理解我国处理民族关系的基本原则的重要性。本框题有如下内容不作拓展:我们伟大的祖国是各族人民共同缔造的;我国新型民族关系的形成;实施西部大开发战略对加快民族自治地方的经济和社会发展的意义;我国能够真正建立新型民族的原因。《处理民族关系的原则:平等、团结、共同繁荣》是高一《政治生活》第三单元第七课内容,本课内容由三目构成,第一目:雪域高原的历史性跨越,第二目:我国处理民族关系的基本原则,第三目:巩固社会主义民族关系,我们该做什么,能做什么。
由乙方安装时,乙方只负责本次音响器材设备的安装,不负责其它安装或改装(改电源、改电路、改插座等)及乙方无关的设备。
一、 引题 秋天到了,一片片树叶落下来,树叶落下来是怎么样的?(幼儿自由讲述) 二、 幼儿探索并讨论。 1、幼儿猜想并尝试:你桌上东西落下是怎么样的?每一样东西都试一试。 2、引导幼儿和同伴比较,发现物体下落时的异同。 “请你找一个好朋友比一比,看看你们手里的东西落下来有什么不一样?” 3、幼儿交流:(1)你有什么发现吗?(幼儿自由交流) (2)为什么有的物体落的快,有的物体落的慢? 4、小结:所有的物体都会下落的,不同物体下落的速度有快有慢。 5、师演示一张皱纸和一块积木,引导幼儿观察,发现物体下落路线是不一样的。
端正的态度是学习的法宝老师、同学们:大家早上好!今天我在国旗下讲话的内容是《端正的态度是学习的法宝》。俗话说:“宝剑锋从磨砺出,梅花香自苦寒来。”在学习上也是如此,那些学习上的佼佼者,都付出了比别人多的努力,今天就来谈谈学习的态度,因为态度决定一切。我觉得要做到三个“超越”。1. 超越自己,这个世界上最难战胜和超越的人不是别人,正是你自己,当你发现自己在一点一点改变时,你就超越自己了,只有超越自己,才可能超越别人。
活动目标: 1、让幼儿在猜猜、想想、看看、数数的游戏中复习5以内的数数,序数和排序。 2、发展幼儿的观察力,提高幼儿对计算活动的兴趣。 3、趣味识字:橘子、葡萄、梨子、苹果、西瓜、桃子、草莓香蕉等。活动准备: 1、贴绒水果娃娃5个(背后贴有水果),颜色不同的卡车5辆,二进制游戏图片一张,各种水果拼图20张。 2、每组1----5数字卡片若干。识字卡:橘子、葡萄、梨子、苹果、西瓜、桃子、草莓、香蕉等。 活动过程: 一、开始部分 出示水果娃娃,引起兴趣。“今天,老师请来了水果娃娃,我们来看看都有些什么水果?”(橘子、葡萄、梨子、苹果、西瓜、桃子、草莓、香蕉)我们来数数,一共有几种水果娃娃呢? 二、基本部分 1、猜数和排序 (1)猜数 水果娃娃要和小朋友玩个猜数的游戏,每个水果娃娃背后都藏有一个数字,你们想知道是数字几吗? a、梨子娃娃说;“我比2多1”,谁知道这个数字是几呢? B、葡萄娃娃说“我比5少1” C、橘子娃娃说“我是1-----5数字中最小的那个数,是数字几呢? D、你们看看1----5数字中还剩下哪两个数呢?那西瓜娃娃和苹果娃娃谁是2谁是5呢?西瓜娃娃说:“我的数字比苹果娃娃大,谁能告诉大家是几?那苹果娃娃是数 字几? (2)巩固 现在老师看看你们记住了没有,加以验证。师指认每个水果娃娃,让幼儿说出背后的数字。 (3)猜猜少了哪个数? 现在老师任意拿走一样水果,问少了几,是什么水果,重复指认水果和数字。
这篇《国旗下的讲话演讲稿:文明是种无形的力量》,是特地,希望对大家有所帮助!敬爱的老师,亲爱的同学们:大家请看我手中的这张图片,你是否发现图中女孩的双手有什么不同?(向观众展示图片)是的,他的双手只有两个手指头!如果你只有两个手指,你会努力让自己和同龄人一样生活吗?如果你只有两个手指,你是否坚信自己的生命仍然可以圆满?图中的女孩,却用这样一双只有两个手指的右手,做了一件感动中国的事情。她叫潘娜威,辽宁营口市一名普通的学生,她用着两个指头见了无数的废旧电池。有的时候,小娜威捡废电池,周围小孩子看见跟着学,有的孩子父母看见了,就特别不高兴地喊,多脏啊,捡哪个干嘛?小娜威一点也不客气地回敬说:“手脏了可以洗,地球脏了怎么洗?”
尊敬的老师们,亲爱的同学们:大家早上好!今天国旗下讲话的题目是《励志和勤奋是成才的必由之路》。励志,首先要有志向,有高尚远大的理想,和明确的奋斗目标。少年周恩来在全班同学面前表明了自己的心迹;要为中华崛起而读书,他不愿意自己的民族再软弱,不愿意自己的同胞再受欺辱,他把个人的学习与民族的振兴大业相联系,最终成了新中国的第一任总理!可见,高尚远大的理想和明确的奋斗目标对人的领导作用多么巨大!其次,励志一定要有实践,要为实现志向而进行不懈的努力!西汉时期,有个孩子叫匡衡,自幼勤奋好学。可是家境贫寒,晚上想读书而无灯照明。邻居家倒是每到夜晚,总是烛灯火通明,可惜这光照不到匡衡的屋里。怎么办呢?匡衡便把自己家靠里邻居家的那堵墙壁凿开,他就凑着透进来的灯光,读起书来。就这样,匡衡终于成了一名大学问家。
以下是《关于国旗下讲话稿:文明是种无形的力量》的文章,供大家参考关于国旗下讲话稿:文明是种无形的力量敬爱的老师,亲爱的同学们:大家请看我手中的这张图片,你是否发现图中女孩的双手有什么不同?(向观众展示图片)是的,他的双手只有两个手指头!如果你只有两个手指,你会努力让自己和同龄人一样生活吗?如果你只有两个手指,你是否坚信自己的生命仍然可以圆满?图中的女孩,却用这样一双只有两个手指的右手,做了一件感动中国的事情。她叫潘娜威,辽宁营口市一名普通的学生,她用着两个指头见了无数的废旧电池。有的时候,小娜威捡废电池,周围小孩子看见跟着学,有的孩子父母看见了,就特别不高兴地喊,多脏啊,捡哪个干嘛?小娜威一点也不客气地回敬说:“手脏了可以洗,地球脏了怎么洗?”
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。