他告诉我,他是一名高中生,但对学习没有一点兴趣,他的爱好是摄影。他每天都沉迷于摄影当中,学习成绩非常差。父母对他的“不务正业”极为不满,经常指责他。就在两个月前,他最心爱的老相机被愤怒的父亲摔碎了,他一气之下离家出走,和一群网上认识的志愿者来到了这里——梦想了好久的目的地。
刘标标睁了睁眼,又闭上了。妈妈又叫了几遍,还是没用,只能给睡梦中的儿子穿上衣服。刘标标忽然感觉身上很痒,终于忍不住彻底睁开了眼,大声说:“我不想起床!”“不想起也得起!”妈妈明显在嗓门上占据优势。
刘伟发了一个月脾气。母亲心疼儿子,就买了一辆旧单车,在一个夏曰的午后推回了家。刘伟骑上单车就跑,天天呼朋唤友,在集镇上闲逛。只有在外面没处混的时候,他才会回家,迎接他的自然是父亲铜铃般的眼珠子。刘伟把他爹当空气,吃完饭,跨上单车又风一样飘走了。
那年我上小学三年级。寒假前到学校拿学期成绩单。回家时我和六七个没带书包的好友同行。刚领的成绩单拿在手上,已经被我们折得皱巴巴了。
爱因斯坦与上海有特殊的情缘,他曾在1922年两次到访上海,前一次他踏上堤岸就获悉自己得到诺贝尔物理奖的消息;后一次他在福州路工部局礼堂演讲“相对论”,这两次抵沪,他都入住在理查饭店,即今天外滩的浦江饭店。
小镇只有一所大学,不大,但哪个国家的学生都有。中国来的一共五名,巧了,全是女生,名付其实五朵金花。珍妮是她们的头儿。五朵金花同吃住同进出,像一家子出来的。其实本来就是一家子。
那一年,我即将大学毕业,为了找个单位,天天出去“扫街”,但仍一无所获。我学的是建筑设计专业,找了几家建筑设计院,人家要的不是博士就是硕士。一负责人看着我的简历说,你读书时,还获过不少奖,不错!可是,我们这里暂时不缺建筑设计方面的人才,要不你先来我们这里干个保安什么的吧!等有机会再安排你。
五、以深化改革为动力,狠抓落实求实效全面完成内设机构改革,新组建业务部门x个,制定出台《关于加强新时代检察业务工作的实施意见》《关于进一步规范司法行为工作细则》等制度规定,实现了机构设置、人员配备、业务指导和管理监督等方面的全面加强。着力推动各项检察业务工作提质增效,扎实开展“质量建设年”活动,制定实施《关于持续深化全面从严治检“五个一”专项行动实施方案》《关于建立健全常态化开展“质量建设年”活动常态化机制的实施方案》等文件,扎实推进司法办案规范化建设。坚持全面从严治检与加强队伍建设有机统一,开展以案促改专项活动,将廉洁司法贯穿于检察工作全过程,积极构建新时代检察机关风清气正的政治生态和业务生态。六、以主动接受监督为常态,自觉接受外部监督
环节四 课堂总结 巩固知识本节课我采用线索性的板书,整个知识结构一目了然,为了充分发挥学生在课堂的主体地位,我将课堂小结交由学生完成,请学生根据课堂学习的内容,结合我的板书设计来进行小结,以此来帮助教师在第一时间掌握学生学习信息的反馈,同时培养学生归纳分析能力、概括能力。环节五 情景回归,情感升华我的实习指导老师告诉过我们,政治这一门学科要从生活中来到生活去,所以在课堂的最后布置课外作业,以此培养学生对理论的实际运用能力,同时检验他们对知识的真正掌握情况,以此达到情感的升华,本节课,我根据建构主义理论,强调学生是学习的中心,学生是知识意义的主动建构者,是信息加工的主体,要强调学生在课堂中的参与性、以及探究性,不仅让他们懂得知识,更让他们相信知识,并且将知识融入到实践当中去,最终达到知、情、意、行的统一。
师:改革开放后,乔家依然是生意兴隆,财源广进。下面我们来看一下他们乘坐另一种交通工具。(画外音响起,男中音用缓慢、低沉的语调朗诵;幻灯片展示)(七)乔致庸1905年来到上海,腰缠万贯的他坐上了行驶在柏油公路上的“四轮子”。可惜的是,此后的四十年,中国也没有多少柏油路和“四轮子”.直到50年后,四轮子和“柏油路”才多了起来。“四轮子”是什么?为什么“此后的四十年,中国也没有多少柏油路和四轮子”?为什么“直到50年后,四轮子和“柏油路”才多了起来”?生:略师:20世纪初,汽车开始出现在上海。因为旧中国政治腐败、民生凋敝。新中国成立后有了自己的汽车制造厂,比如说一汽、二汽。解放后,我们的汽车产业蒸蒸日上。(展示材料)屏幕显示:1956年,长春第一汽车制造厂生产出第一批 “解放牌”载重汽车,标志着中国汽车工业的诞生。2009年我国汽车工业取得了全球瞩目的成绩,首次超过美国,成为全球产销量第一的国家。
★教后记:历史教学的最高目标不是单纯的记忆和培养能力,而是树立正确的历史观,培养学生的历史责任感。从这一点讲,新课标及新课标教材给老师极大的发挥空间,摆脱了以往的“教教材”,真正实现了 “用教材教”,只有这样,教师才不只是一个“备课”的“教书匠”,而是一名设计教学“设计师”,以教材为砖瓦,建造有自己独特风格的教育大厦。这是我设计教学的出发点。开放式的课堂需要思想开放的教师,但对教师的课堂驾驭能力要求更高,否则“一放就活,一活就乱”,只求课堂热闹,热闹过后,学生一无所获,那么这样的开放课堂依然是失败的。开放式的课堂并不是任由学生说,教师必要的引导与客观的评价尤为重要。★问题解答⊙【学思之窗】请谈谈,火车机车的不断改进,给国民经济发展、百姓生活带来怎样的影响?答案提示:运输量大,有利于各地区的物资交流和劳动力流动,促进经济发展;交通便利快捷;机车内部环境舒适,给百姓出行带来方便。
二、教学目标:1、知识与能力(1)了解我国古代冶金、制瓷、丝织业发展的基本情况;(2)了解中国古代手工业享誉世界的史实,培养学生的民族自信心。2、过程与方法(1)通过大量的历史图片,指导学生欣赏一些精湛的手工业艺术品,提高学生探究古代手工业的兴趣;(2)运用历史材料引导学生归纳古代手工业产品的基本特征。3、情感态度与价值观:通过本课教学,使学生充分地感受到我国古代人民的聪明与才智,认识到古代许多手工业品具有较高的艺术价值,以及在世界上的领先地位和对世界文明的影响,增强民族自豪感。
【教学方法】教法:讲授法、探究教学法、讲述法、谈话法、比较法学法:接受性学习法、探究性学习法、合作学习法、引导学生自主学习;通过阅读史料,分析历史问题;【教学重点】掌握中国古代手工业发展的基本史实:古代手工业的重要成就;官营手工业产品精美,品种繁多,享誉世界;民营手工业艰难发展,后来居上;家庭手工业是中国古代社会稳定的重要因素。【教学难点】中国古代手工业发展的特征。【教学媒体】多媒体、图片、视频【课型】综合课【导入新课】在05.7.13日伦敦佳士德的一场名为“中国瓷器、手工艺品及外贸产品的拍卖会上,一只绘有“鬼谷下山”图的元代青花瓷罐,被一美国古董商以1656万英镑也就是约2.45亿人民币的价格投得,为什么我们古代的手工业精品在今天如此受人青睐呢?这些价值连城的青铜器、瓷器是什么时候就产生了的,经历了一个怎样的发展历程?今天我们就来解开这些谜底。下面,我们一起学习第2课《古代手工业的进步》。
课堂教学设计说明前一节课学生通过推导,已初步理解和掌握了乘法分配律,但要使学生切实理解乘法分配律,必须经过反复地练习,本节课就是解决如何应用乘法分配律使计算简便,在应用的过程中,进一步加深对乘法分配律的理解.新课分为两部分.第一部分通过师生对出题,激发学生积极性,为应用乘法分配律做铺垫.第二部分是教学例6,用简便方法计算,通过老师的启发,学生经过观察,讨论找出题目的特点,总结出简便运算的方法.本节课的练习分两个层次.一个层次是讲中练,边讲边练,并在练习中不断变换题目形式,提高学生灵活运用运算定律的能力.第二个层次是总结性的综合练习.通过师生对出题使学生深刻理解乘法分配律的内涵,抓住关键,进行简算;同时对不符合乘法分配律的题目,经过讨论,修正过来,使学生对运算规律理解得更透彻.
探究点二:列分式方程某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:设原计划每天生产x个,则实际每天生产(x+4)个,根据题意可得等量关系:(原计划20天生产的零件个数+10个)÷实际每天生产的零件个数=15天,根据等量关系列出方程即可.设原计划每天生产x个,则实际每天生产(x+4)个,根据题意得20x+10x+4=15.故选A.方法总结:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.三、板书设计1.分式方程的概念2.列分式方程本课时的教学以学生自主探究为主,通过参与学习的过程,让学生感受知识的形成与应用的价值,增强学习的自觉性,体验类比学习思想的重要性,然后结合生活实际,发现数学知识在生活中的广泛应用,感受数学之美.
安装及运输费用为600x+800(12-x),根据题意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整数,所以x=2,3,4.答:有三种方案:①购买甲种设备2台,乙种设备10台;②购买甲种设备3台,乙种设备9台;③购买甲种设备4台,乙种设备8台.方法总结:列不等式组解应用题时,一般只设一个未知数,找出两个或两个以上的不等关系,相应地列出两个或两个以上的不等式组成不等式组求解.在实际问题中,大部分情况下应求整数解.三、板书设计1.一元一次不等式组的解法2.一元一次不等式组的实际应用利用一元一次不等式组解应用题关键是找出所有可能表达题意的不等关系,再根据各个不等关系列成相应的不等式,组成不等式组.在教学时要让学生养成检验的习惯,感受运用数学知识解决问题的过程,提高实际操作能力.
1.了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用;(重点)2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长l=nπR180和扇形面积S扇=nπR2360的计算公式,并应用这些公式解决一些问题.(难点)一、情境导入如图是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗(π 取3.14)?我们容易看出这段铁轨是圆周长的14,所以铁轨的长度l≈2×3.14×1004=157(米). 如果圆心角是任意的角度,如何计算它所对的弧长呢?二、合作探究探究点一:弧长公式【类型一】 求弧长如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
“用计算器计算”是江苏国标版四年级上册数学第十一单元的教学内容这部分内容是在学生熟练掌握了整数的四则计算法则及两步混合运算的基础上进行教学。通过学习使学生可以借助计算器进行较大数目的四则运算并借助计算器来探索有关规律有利于帮助学生形成初步的探索和解决问题的能力。 本单元内容分两段安排,第一段先认识计算器了解计算器的基本功能和操作方法再学习用计算器进行四则计算的方法。第二段教学用计算器进行两步混合运算并安排了练习十。教材在“想想做做”和练习十中还编排了一些探索数学规律的趣题并通过“你知道吗”介绍“改错键”等常用的功能键以及有关计算工具发展的历史让学生了解计算工具的演变过程感受人类科技的进步与发展。最后教材还安排了实践活动《一亿有多大》帮助学生形成良好的数感。本单元分四课时完成今天我说的是第一课时。