三、说教法考虑到一年级学生的现状,我主要采取设置情景教学法,让学生积极主动地参与到教学活动中来,使他们在活动中得到认识和体验,产生践行的愿望。培养学生将课堂教学和自己的经验结合起来,引导学生主动去发现周边的客观事物。基于本课题的特点,我主要采用了以下的教学方法:直观演示法:利用图片等手段进行直观演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握。四、说学法在整堂课教学,让学生在声情并茂的朗读中感受文本的美,早读中识字,在读中感悟,在读中积累、内化,在读中训练语言,来培养学生的朗读能力,表演能力也拓展了学生的思维能力,还培养了学生的自信心和主动探索、团结合作、勇于创新的精神。激发他们的情感,让他们在自主,合作,探究中学习语文,从中感受到学习语文的乐趣,更喜欢学习语文。五、说教学过程在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理,各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
我上的是《人之初》的第一课时,也就是课文第一个片段。为了激发学生了解中华传统文化的兴趣,我一开始出示了《三字经》的书籍图片,用夸张的语气对孩子们说:“今天,魏老师,带来了一个老朋友,它呀,有900多岁了!”孩子们一听到这个消息,小嘴里不禁发出“咦”的惊奇声。孩子们的求知欲和好奇心被一下子点燃。其实,很多小朋友对《三字经》还是很熟悉的,因为刚开学,学校就下发了这一经典的儿童启蒙读本,里面富含一个个小故事和插图,寓教于乐。为了激发学生对传统国学的兴趣,我在教学中有意识地多介绍了一些有关《三字经》的知识:“《三字经》是古代小朋友上学的第一本书,是一本启蒙读物。他一共1000多个字,但是包含了很多的内容,也有很多有意思的故事。它最喜欢和读得懂它的人交朋友。你们有信心来读懂它吗?”
(二)、学习字词1、看图说话,认识体育活动的名称。师:看,操场上多热闹啊!这些小朋友都在干什么呢?(生:有的在跑步、有的在打球.......)师:你们说的真棒!老师告诉你们一个秘密,刚才你们说的体育活动中就藏着我们今天要学习的词语宝宝,咱们一起把他们读出来怎样?(师点击课件出示词语)2、这些词语你们认识吗?(如有认识的就请他读一读)不认识怎么办呢?利用拼音自已读一读,指名读、集体读。3、教师:去掉拼音小朋友们还认得这些字吗?我们来比一比看哪一组的小朋友反应最快了。利用课件,检查学生认读情况。4、组织学生看老师手里的卡片不出声做动作。5、小朋友看刚才我们学的词语中有的是用手做的动作,有的是用脚做的动作,那么请几个小朋友互相合作找一找哪些是用手做的动作,哪些是用脚做的动作?师生一起总结学习:“扌、足”。将字分类写在黑板上。
三、估算度的把握。《标准》在计算教学方面强调的内容之一是重视估算,培养估算意识。我们认为重视估算,就是对学生数感的培养,具体体现在能估计运算的结果,并对结果的合理性作出解释。本节课的设计就是让学生在具体情境中,学会两种估算方法,结合具体情况作出合理解释。四、教会学生单元整理与复习的方法,使学生终身受益。我们知道授人以渔而非鱼的道理。在本节课中,老师设计了引导学生学会整理与复习的方法,如:带着问题看书,将算式分类、归纳、总结出本单元所学内容,计算方法,注意地方,最后进行有针对性的练习。如果我们的老师从小就有意识地对学生进行学习方法的培养,学生将终身受益。我想我们教学研讨活动就是为了实现教育的最高境界:今天的教是为了明天的不教。
本节课开始时,首先由一个要在一块长方形木板上截出两块面积不等的正方形,引导学生得出两个二次根式求和的运算。从而提出问题:如何进行二次根式的加减运算?这样通过问题指向本课研究的重点,激发学生的学习兴趣和强烈的求知欲望。本节课是二次根式加减法,目的是探索二次根式加减法运算法则,在设计本课时教案时,着重从以下几点考虑:1.先通过对实际问题的解决来引入二次根式的加减运算,再由学生自主讨论并总结二次根式的加减运算法则。2.四人小组探索、发现、解决问题,培养学生用数学方法解决实际问题的能力。3.对法则的教学与整式的加减比较学习。在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣。
1.会用二次根式的四则运算法则进行简单地运算;(重点)2.灵活运用二次根式的乘法公式.(难点)一、情境导入下面正方形的边长分别是多少?这两个数之间有什么关系,你能借助什么运算法则或运算律解释它?二、合作探究探究点一:二次根式的乘除运算【类型一】 二次根式的乘法计算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法总结:几个二次根式相乘,把它们的被开方数相乘,根指数不变,如果积含有能开得尽方的因数或因式,一定要化简.【类型二】 二次根式的除法计算a2-2a÷a的结果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故选C.
1.关于二次根式的概念,要注意以下几点:(1)从形式上看,二次根式是以根号“ ”表示的代数式,这里的开方运算是最后一步运算。如 , 等不是二次根式,而是含有二次根式的代数式或二次根式的运算;(2)当一个二次根式前面乘有一个有理数或有理式(整式或分式)时,虽然最后运算不是开方而是乘法,但为了方便起见,我们把它看作一个整体仍叫做二次根式,而前面与其相乘的有理数或有理式就叫做二次根式的系数;(3)二次根式的被开方数,可以是某个确定的非负实数,也可以是某个代数式表示的数,但其中所含字母的取值必须使得该代数式的值为非负实数;(4)像“ , ”等虽然可以进行开方运算,但它们仍属于二次根式。2.二次根式的主要性质(1) ; (2) ; (3) ;(4)积的算术平方根的性质: ;(5)商的算术平方根的性质: ;
方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a,c9,a2+b2,a2中,最简二次根式共有()A.1个 B.2个C.3个 D.4个解析:8a中有因数4;c9中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A.方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式定义形如a(a≥0)的式子有意义的条件:a≥0性质:(a)2=a(a≥0),a2=a(a≥0)最简二次根式本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.
属于此类问题一般有以下三种情况①具体数字,此时化简的条件已暗中给定,②恒为非负值或根据题中的隐含条件,如(1)小题。③给出明确的条件,如(2)小题。第二类,需讨论后再化简。当题目中给定的条件不能判定绝对值符号内代数式值的符号时,则需讨论后化简,如(4)小题。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同号,又∵a+b=-6<0,∴a<0,b<0∴ .说明:此题中的隐含条件a<0,b<0不能忽视。否则会出现错误。例4.化简: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.这样x=6, ,x=-5,把数轴分成四段(四个区间)在这五段里分别讨论如下:当x≥6时,原式=(x-6)-(1+2x)+(x+5)=-2.当 时,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.当 时,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.当x<-5时,原式=-(x-6)+(1+2x)-(x+5)=2.说明:利用公式 ,如果绝对值符号里面的代数式的值的符号无法决定,则需要讨论。方法是:令每一个绝对值内的代数式为零,求出对应的“零点”,再用这些“零点”把数轴分成若干个区间,再在每个区间内进行化简。
(三)实践活动(运用)接着,我设计了实践活动,让学生走出教室,在校园找到不同型号的自行车有四辆我把学生分成四组,并且分工合作,每组5个人,有3 个人负责采集数据,有两个人负责计算出结果。教师还要在旁边指导测量的方法,让学生学会收集数据。培养学生学会用数学的眼光观察现实生活,从中发现问题,提出问题,解决问题,体会数学的广泛应用与实际价值,获得良好的情感体验。数学模型方法的教学,还要培养学生运用模型解决现实问题的能力。因此,在学生理解模型之后,老师提供各种各样的现实问题,引导学生运用所得的数学模型去解决。在这个过程中,教师的指导非常重要,教师要指导学生把现实问题的元素与数学模型中的元素建立丐联系,还要指导学生如何运用已经建构的数学模型来分析和处理问题。学生经历了这样的学习过程,他们才会感受到数学模型的力量,才会感受到数学学习的乐趣。
一、教材分析:本节知识,是在学生建立了小数的概念,学习了小数性质以及小数点移动引起小数大小变化的基础上进行的,包括了复名数化成小数和复名数化成低级和高级单位单名数。教材重在向学生渗透“数学来源于生活,又服务于生活”的理念,以小数在生活中的实际应用为切入点,从学生的生活经验和知识背景出发创设情境,引导学生进行积极的体验,从而体会到数学的内在价值。二、说教法这节课,在教法和学法上力求体现以下几个方面:1、坚持以“学生为主题,老师为主导,训练为主线”的原则,主要采用启发诱导的教学方法,引导学生亲历知识的观察、发现、应用的过程。引导学生利用迁移法,讨论法,自主探究法对新知识进行主动学习。2、注重创设情境,从学生已有的小数知识出发,紧密结合具体的生活情境和活动情境,激发学生的学习兴趣。
(一)创设情境,引入新知1、引出小数新课程标准强调数学与现实生活的联系,要求数学教学必须从学生熟悉的生活情景和感兴趣的事物出发,使他们体会到数学就在身边,也感受到数学的趣味和作用,增强学生的数学应用意识。一开始我便与学生谈话:汤老师周末带孩子去超市买东西,可是他看不懂商品的价格,你们愿意帮他吗,(愿意)。大家一起帮他读出这些文具的价格是多少钱。激发了学生的兴趣,让学生充满爱心和自信心走进课堂。然后请学生仔细观察这些价格,有什么不同,从而引出小数的概念。2、教学读法我充分相信学生的能力和知识广度。聪明的学生可能一下子就能读出小数,有的学生家长教过或听到过小数怎样读,所以我让学生大胆试一试,然后经过学生小组讨论总结出小数的读法。
这样设计,既复习了新课所必备的旧知,又自然合理地引入新课,一开始就紧紧吸引了学生的注意力,激发起学生的求知欲。(二)探索新知1、质数和合数的意义(教学例1)。(1)让学生拿出印发的写有例1原题的练习纸,利用学过的求约数的方法,写出1-12每个数的所有约数。(2)按照约数个数的多少进行分类,提出以下问题让学生讨论:①每一个数约数的个数相同吗?各有多少个约数?②按照每个数的约数个数的多少,可以把这些数分成几类?你认为是一类的用同一符号标出来。检查学生讨论情况并提问:你是怎样分的?为什么这样分?每一类各包括了哪几个数?让学生充分发表意见,然后师生共同归纳,并用投影出示三种分类情况:
师:非常正确。现在我们知道了表示方法,但是我们该怎么读呢?也就是说我们现在知道了怎么用数学符号去表示,或者说是会书写了。但是我们要说给别人听该怎么说呢?也就是该怎么读它呢?(正号!)正确。这两个符号在我们数学的术语里面又有了另外一个称呼,就是“+”在这里读着“正号”,“-”在这里读着“负号”。这个读法是数学里面规定的,是我们日常用语中的习惯读法。这里的+5,+6而不是我们所说的加上5,加上6,加是一个运算过程,而正号只是一个符号,它可以和数字组合在一起作为是整体的,是一个整体的数字,是不含运算的。同理,这里的-5,-6它也不是减去5,、减去6,而是一个-5、-6的数字。为了和我们的加号和减号相区分,所以我们就给了它另外一种读法。
(4)判断中进行教学内容的递深,形成了反思——学习——强化的整个学习过程。在学生做出“6是倍数”的正确判断之后,并不简单换章,而是以此为契机“教学找一个数的因数”以谈话导入,形成知识相互的联系与区别,“谈话:必须说清谁是谁的倍数,谁是谁的因数。所以6可能是某些数的倍数,也可能是某些数的因数,那我们就来找一个数的因数。你能找出36所有的因数吗?”(5)讨论互评,自主学习放手让学生学习找一个数的因数,从无序到有序,从自寻到互学,请学生板书,学生评价,“提问:你是用什么方法找到一个数的因数,可以介绍给大家吗?还有其他方法吗?”1×36=36 36÷1=362×18=36 36÷2=183×12=36 36÷3=124×9=363 6÷4=96×6=36 36÷6=6(6)自主不失指导,掌握不失总结如:提问:5为什么不是36的因数?(因为36÷5不能整除,有余数)
四、说教学策略和方法本课的设计与实施,是一段艰难的过程,同时,更是一段充满着创造与激情的过程。我把本课的教学大致分成了四个部分。一、亲历生活,交流发现祖国幅员辽阔,春秋季南北温差变化,如此难得的学习资源怎能不好好地利用呢?课前,我给学生布置了一个任务:请你对全国各地的气温进行一次调查。上课开始的5分钟,是学生对他们的调查进行交流的时间。在这个开放与灵动的5分钟里,既有“小小天气播报员”精彩地播报,更有孩子们围绕着调查数据展开的精彩对答,请看录像(录像)。正是基于这种对生活的亲身感受,学生自然地走进了负数。在对直观数据进行观察与分析的过程中,学生建立起对“负数”的感性认识。实践表明,教师为学生搭建一个交流的“舞台”,学生就能为教师呈现出一个开放的课堂、动态的课堂。
4、幸运碰撞文文选了一条近的路,然后顺利的来到了猴山。但是猴山的门被设置了密码,密码是由两位数组成,十位上是2、4、9这三个数中的任意一个,个位上是3、6、8三个数中的任意一个,文文最少几次,最多几次可以打开门呢?组织学生小组合作利用卡片拉一拉,并记录结果,全班交流。根据学生汇报,板书组合结果。5、拍照留念看到小朋友们玩得这么开心,聪聪和明明也来了。他们还带来了照相机,在这美好的时刻,新的问题又随之而来:四个小朋友每人都要和聪聪、明明单独各合一张影,一共要照多少张照片呢?孩子们可以在小组内扮演角色,记录不同的方法,还让学生当小摄影师,其余同学来评价。(三)汇报收获,拓展内化。请同学们回顾一下这节课都解决了哪些问题?怎样解决的?学生汇报完后,强调:在搭配中要做到既不重复又不遗漏就必须按一定的顺序进行观察、操作。在今后的学习生活中还会遇到许多这样的问题,鼓励学生只要发挥自己的聪明才智就一定能解决出来。
三、制作统计图教师:事先我们一起搜集了这几年中我们班同学家庭拥有计算机的情况,并制成了统计表,请谁来介绍一下。(学生利用事先制成的统计表介绍数据)如果请你将它制作一份折线统计图,你有信心完成吗?小组讨论:你认为在制图时应做哪些工作?有什么注意点?(学生小组讨论后交流)在交流中,教师顺应学生回答,并相应介绍折线统计图各部分名称:(1)横轴:一般用于标明日期的前后;(2)纵轴:标明数据,反映单位长度表示的数据大小,一般最高数据比统计到的最高数据稍高一些;(3)制表日期和单位。学生独立在练习之上尝试练习。教师指名演示,同学互相评价并改正。统计分析:从这张统计图上你可以获得哪些信息?学生相互交流,也可以提问请同学回答。
(设计意图:这样一来,学生的设计方案可能是很开放的,例如,有的学生只是把纵向条形统计图进行90度旋转,得到的横向统计图横轴与纵轴的方向始终与规范的统计图不一致(其实,这些“统计图”也同样反映这些数据的状况,只是不够规范而已)。让学生自主探索、交流合作,得出结论。这样可以极大地调动学生学习的兴趣。培养学生的迁移类推能力和合作交流的能力。)2、比较并介绍横向条形统计图产生的条件A、(出示完整的横向条形统计图与纵向条形统计图)他们有什么不同?又有什么相同的?把自己的发现跟同桌说说。(根据学生的回答板书:横轴:数据;纵轴:项目)B、(生回答后)小结揭题:只是竖着的变成横着了,但是内容没变,只是形状变了。这就是我们今天学习的“横向条形统计图”(板书)。它一般在统计报表中出现,有时竖着画不下的时候我们可以横着画出这样的统计图。
1.估计一下教室地面的大小,并说说你是怎样估计的?如果知道教室的长为8米,宽为6米,请问它的面积是多少?如果要在教室的天花板一周围上装饰线条,需要多少米线条?2.小刚房间的一面墙壁长6米,宽3米,墙上有一扇窗面积是3平方米,现在要粉刷这面墙壁,要粉刷的面积是多少?3.一辆洒水车每分行驶60米,洒水的宽度是8米,洒水车直行9分,被洒水的地面是多少平方米?4.一张长方形的纸,长9厘米,宽4厘米,剪下一个最大的正方形后,剩下纸片的面积是多少平方厘米?5.小明用36厘米长的铁丝围成一个正方形,这个正方形的面积是多少平方厘米?6.有两个大小一样的长方形,长18厘米,宽9厘米,拼成一个正方形,它的周长是多少?拼成一个长方形,它的周长是多少?拼成的两个图形面积有什么关系?是多少?