二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
教学目标: 1、观察图片,讲述故事中角色对话。 2、懂得同伴之间应该相互关心、相互帮助的道理。 3、初步培养幼儿讲故事和表演故事的能力。 准备: 背景图一幅,小兔、大象、老虎(插入教具),头饰若干。。 过程: 一、进入主题。(音乐响起),带小朋友到树林里去玩玩。出示背景图。 二、演示教具,启发提问,引导幼儿讲述。 1、问:谁在小树林里?干什么?讨论后总结:小白兔、小灰兔、小黑兔在树林里高高兴兴地玩着。(学习词“高高兴兴”)。 2、插入老虎。哎呀!谁来了?它来干什么?小兔子们怎么办?总结:突然,从树林里窜出一只大老虎,它张着大大的嘴,露着尖尖的牙,要来抓小兔子,小兔子吓得转身就逃。(学习词“窜”)。
2.发展幼儿的语言能力和模仿能力。3.培养幼儿对游戏的兴趣。 活动准备:1.贴绒教具:有小鸡、小鸭、小猫、小狗、小兔和大灰狼。2.大灰狼头饰一个。活动过程:1.激发兴趣,导入课题。教师:今天老师给小朋友带来了许多朋友,你们想知道它们是谁吗?(评析:托班的孩子能集中注意力的时间不会超过10分钟,因此,直接进入课题比较适合托班幼儿的年龄特点。)2.学一学,做一做学习“叽叽”。教师:情小朋友们仔细听一听,看一看,这是谁来了?我们一起向小鸡问好。提问:小鸡是怎么叫的?幼儿回答后再听小鸡的叫声,一起学说“叽叽”。然后教师和幼儿一起用手做成小鸡尖尖的嘴巴,一起说“叽叽”。教师注意每一个幼儿的发声,及时纠正。(评析:贴绒教具便于幼儿运用视觉直接感受对象,让幼儿动一动,亲自模仿小动物,满足了幼儿的好动特点,更是对所感知对象的进一步了解。)学习“嘎嘎”。教师:现在是谁来了?我们一起向小鸭问好。提问:小鸭是怎么叫的?幼儿回答后再听小鸭的声音,一起学说“嘎嘎”,然后用手上下放好,做成小鸭的嘴巴,一起说“嘎嘎”。教师注意倾听幼儿的发音,及时进行个别纠正。一次学说“喵喵”“汪汪”“跳跳”,每次都让幼儿学一学,做一做。(评析:以上几个环节没有反复的跟读,都让幼儿在看听做中练习发音,幼儿的兴趣非常浓。)感受大灰狼的声音。教师:听,这是谁的声音?模仿大灰狼的声音)真可怕呀,这是谁?
2、培养幼儿充分的想象能力与创造能力以及各种线条的组合能力。准备:周围墙上贴蚂蚁的各种姿势图、晚会场景的课件一段、彩笔、背景音乐过程:一、观看晚会盛况,感受线条的多样组合方法,以及了解不同的线条排列方法。听,多美的音乐呀,那边在干什么呢?咱们去瞧瞧,哦,原来这里正举行着舞会呢?看他们打扮的怎样,他们身上衣服上都有什么,(花纹)这些花纹是怎么排列的呢?小结:同一种线条可以横排、竖排、斜排地放在一起,也可以用各种各样的几种线条组合在一起,这样的花纹会更加漂亮。
2、培养幼儿仔细的观察能力。 准备:纸、彩笔、记号笔、实物:气球、灯笼、萝卜过程:1、师复述故事内容。2、分析故事四情节并尝试把小兔不同的姿态画下来。今天,我们来学习用连环画的方法把刚才的故事画下来,好吗?(1)首先,我们来看看小兔来到采地里它看见什么?(萝卜)谁来把小兔看见萝卜的情景画下来?幼儿个别尝试。(2)小兔看见右边上方有个红气球,那小兔的头是怎么样的呢?谁来做做看,然后谁来尝试怎样画呢?小兔的耳朵应画在哪里呢?幼儿个别尝试。
活动目标:1. 培养幼儿参加音乐活动的兴趣。2. 调动幼儿各种感观,让幼儿感知音乐的高低。3. 培养幼儿用创造性的方式表达高低的能力。活动准备:大树四棵、背景图、各种小动物、磁带、录音机活动过程:一.开始部分:1. 律动:小动物律动2. 练声,复习歌曲。
2、 体验与同伴合作进行竞赛游戏的快乐。活动准备:(环保)1、 师幼合作用废旧报纸卷成纸棒作成小树苗。2、 场地布置如图,终点放两个废旧蛋糕盒。。活动过程:一、引出主题,激发兴趣。1、带幼儿到户外场地。随着老师的节奏跟着老师活动身体各部位:头部运动、手臂运动、腰部运动、脚部运动、关节运动。2、我们要去做运送小树苗的小勇士了,先去观察一下地形吧。 跟着老师环场地慢跑两圈。
2、发展幼儿钻、爬、平衡的能力以及动作的协调性和灵活性。 3、培养幼儿之间友爱互助,克服困难的精神。活动准备: 1、沙袋(数目比幼儿多) 2、小篮子3只、贴有房子图案的椅子3张、平衡木3条、山洞6个、垫子3张 3、布置好场地
2、通过游戏中不同障碍物的设置,尝试多种跳的方法。 3、乐意参与跳的活动,并努力克服困难,一直跳到结束 活动准备: 圈若干、椅子两把。 活动过程: 1、准备活动。 游戏袋鼠妈妈:教师请幼儿手拉手围成一个大圆圈,大家边唱歌边跳跃,可以手拉手跳,也可以自己叉腰跳,教师注意在过程中引导幼儿按照儿歌内容变换跳的姿势。
活动目标: 1、引导幼儿在愉快的游戏中尝试手脚着地向前爬以及正、侧面钻的动作,发展幼儿动作的柔韧性,提高身体的协调性。 2、培养幼儿合作游戏的能力。 3、初步培养幼儿的创造性。活动准备: 体操垫3块、“小桌子”5张(拼搭成魔幻区的山洞)“金箍棒”25根、25个幼儿自制的猴子面具、“猴哥”和“白龙马”的音乐磁带、玩具白龙马1只、 塑料圈3只活动过程:一、场境的布置今天,我们来做个“小猴”救“白龙马”游戏。这个游戏主要是“猴王”听说师傅的“白龙马”被妖怪抓起来藏在一个秘密的地方,昨天“猴王”已经侦察到“白龙马”被妖怪关在“宫殿”里。去“宫殿”要经过的地方,我己经画出来了。展示示意图: 下面请“小孩们”动脑筋,根据场境的示意图把这个场境布置出来。 自评:教师大胆地放手,让幼儿边看图示、边讨论、边操作,小组之间也显得非常团结合作。幼儿用自己感兴趣的方式来完成场境布置,充分体现了幼儿的自主性、参与性和合作性。例如A:男孩们看到图示都主动分成小组抬桌子,把桌子拼成山洞。女孩们都抬垫子、搭塑料圈。例如B:“金箍棒”25根,孩子们自行拼成小路,有的幼儿不同意拼成小路,这就产生“矛盾”。但有的幼儿说:“图上的天然山洞要我们一起拼搭,还要把金箍棒举起来呢”。二、小猴练功 活动伊始,教师扮演“猴王”幼儿扮演“小猴”,音乐响起“猴王”从自己身上拔起一根毫毛放在嘴边一吹,紧接着大喊一声:“孩儿们_____起____床了”,“小猴”齐声说:“是”。 “猴王”和“小猴”同时双手放在自己的额头旁,做观察事物的动作。 师、幼根据猴哥的音乐磁带,一起模仿孙悟空的动作练习基本功。为了能顺利地救出“白龙马”,我们必须了解“地形”,熟悉“地形”下要孩儿们开始操练吧。幼儿根据自己的需要,反复在场地上大胆尝试手脚着地向前爬行以及正、侧面钻的动作等。在练习过程中,教师不断鼓励幼儿动脑筋、想办法克服困难。自评:集中幼儿的注意力,激起大脑皮层的兴奋,通过基本功练习使身体各器官快速进入状态,同时故事引入的方式,激发幼儿主动参加体育锻炼的兴趣。幼儿在尝试中表现大胆、积极和主动,通过自己喜欢的方式进行动作练习,想象力丰富,有些幼儿还有所创造。但也存在少部分幼儿过度兴奋的现象。 例如:“小猴”在模仿孙悟空地上打滚的动作时,显得特别“神龙活现”。
《奇偶性》内容选自人教版A版第一册第三章第三节第二课时;函数奇偶性是研究函数的一个重要策略,因此奇偶性成为函数的重要性质之一,它的研究也为今后指对函数、幂函数、三角函数的性质等后续内容的深入起着铺垫的作用.课程目标1、理解函数的奇偶性及其几何意义;2、学会运用函数图象理解和研究函数的性质;3、学会判断函数的奇偶性.数学学科素养1.数学抽象:用数学语言表示函数奇偶性;2.逻辑推理:证明函数奇偶性;3.数学运算:运用函数奇偶性求参数;4.数据分析:利用图像求奇偶函数;5.数学建模:在具体问题情境中,运用数形结合思想,利用奇偶性解决实际问题。重点:函数奇偶性概念的形成和函数奇偶性的判断;难点:函数奇偶性概念的探究与理解.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
一、复习回顾,温故知新1. 任意角三角函数的定义【答案】设角 它的终边与单位圆交于点 。那么(1) (2) 2.诱导公式一 ,其中, 。终边相同的角的同一三角函数值相等二、探索新知思考1:(1).终边相同的角的同一三角函数值有什么关系?【答案】相等(2).角 -α与α的终边 有何位置关系?【答案】终边关于x轴对称(3).角 与α的终边 有何位置关系?【答案】终边关于y轴对称(4).角 与α的终边 有何位置关系?【答案】终边关于原点对称思考2: 已知任意角α的终边与单位圆相交于点P(x, y),请同学们思考回答点P关于原点、x轴、y轴对称的三个点的坐标是什么?【答案】点P(x, y)关于原点对称点P1(-x, -y)点P(x, y)关于x轴对称点P2(x, -y) 点P(x, y)关于y轴对称点P3(-x, y)
《基本不等式》在人教A版高中数学第一册第二章第2节,本节课的内容是基本不等式的形式以及推导和证明过程。本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容也是之后基本不等式应用的必要基础。课程目标1.掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。2.经历基本不等式的推导与证明过程,提升逻辑推理能力。3.在猜想论证的过程中,体会数学的严谨性。数学学科素养1.数学抽象:基本不等式的形式以及推导过程;2.逻辑推理:基本不等式的证明;3.数学运算:利用基本不等式求最值;4.数据分析:利用基本不等式解决实际问题;5.数学建模:利用函数的思想和基本不等式解决实际问题,提升学生的逻辑推理能力。重点:基本不等式的形成以及推导过程和利用基本不等式求最值;难点:基本不等式的推导以及证明过程.
例7 用描述法表示抛物线y=x2+1上的点构成的集合.【答案】见解析 【解析】 抛物线y=x2+1上的点构成的集合可表示为:{(x,y)|y=x2+1}.变式1.[变条件,变设问]本题中点的集合若改为“{x|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全体实数.变式2.[变条件,变设问]本题中点的集合若改为“{y|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{ y| y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全体实数.解题技巧(认识集合含义的2个步骤)一看代表元素,是数集还是点集,二看元素满足什么条件即有什么公共特性。
本节课选自《普通高中课程标准数学教科书-必修一》(人 教A版)第五章《三角函数》,本节课是第1课时,本节主要介绍推广角的概念,引入正角、负角、零角的定义,象限角的概念以及终边相同的角的表示法。树立运动变化的观点,并由此进一步理解推广后的角的概念。教学方法可以选用讨论法,通过实际问题,如时针与分针、体操等等都能形成角的流念,给学生以直观的印象,形成正角、负角、零角的概念,明确规定角的概念,通过具体问题让学生从不同角度理解终边相同的角,从特殊到一般归纳出终边相同的角的表示方法。A.了解任意角的概念;B.掌握正角、负角、零角及象限角的定义,理解任意角的概念;C.掌握终边相同的角的表示方法;D.会判断角所在的象限。 1.数学抽象:角的概念;2.逻辑推理:象限角的表示;3.数学运算:判断角所在象限;4.直观想象:从特殊到一般的数学思想方法;
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。