5. 作业: 作业我同样选取不同题型的五个计算题,目的是想查看学生学的效果如何,是否对哪类题型还留有疑问。 6. 自我评价: 这堂课我觉得满意的,是能够利用短暂的45分钟把要学的知识穿插在学与练当中,充分地利用了课堂有限的时间,并且能让学生边学边练,及时巩固。 当然这堂课也有很多不足之处,我觉得自己对于课堂上学生做练习时出现的一些小问题处理还没有能够处理得很好,我应该吸取经验教训,再以后的教学中加以改进。 另外对于多个有理数相乘时的符号问题,我觉得自己归纳得还不是很到位,我想解决的办法是在以后的练习中再做些补充,让学生加深理解。从中我也得到一个教训,再以后的教学工作中,我还应该多学习教学方法,多思考如何归纳知识点,才能更好地帮学生形成一个系统的知识系统!
国旗下的讲话---做一个文明的高中生 大家早上好!新学期伊始,我们带着希望、带着梦想,又踏上了新的征程,我们带着微笑、带着清新,迎来了新的一天,当黎明的光划破黑暗,它就意味着我们也已长大成人。同学们,也许,你昨天曾拥有辉煌,但那已灰飞烟灭段甜蜜的回味,也许,你昨天曾遭受挫折,但那已成为腮边几滴苦涩的泪痕,忘记以前的成功与失败,我们只需把经验和教训铭记于心,把学习作为每日的挑战,把生活作为对我们的磨炼,怀着自信与乐观,迎接战斗,我想拥有一个良好的心态即是做一个文明的高中生的前提。同学们,高中阶段是人生的黄金时期,而新中,更是你成功的转折点,是你人生的一步大跨越,这里有众多的良师益友; 这里有优雅的学习环境;这里有严格的校规校训。那我们如何做一名品学兼优、文明礼貌的高中生呢?
遵守校纪校规,做文明高中生各位老师,各位同学:大家早上好!今天国旗下讲话的的题目是 “遵守校纪校规,做文明高中生”。日升月落,斗转星移,不觉间,我们已经走过十六七个春秋,匆匆的脚步,如水的岁月,冲淡我们许许多多美好的记忆,尘封许许多多精彩的往事。但对于我们,至真至诚地遵守校规,则是我们心中遵循的坚定信念。自觉养成遵纪守法的习性,是我们珍惜的道德底线,遵纪守法牢牢铭刻在我们的心间,伴随我们快乐健康成长。古人云:"无规矩不成方圆。"马克思说:"我们必须遵守组织的规矩,否则一切都将陷入污泥中。"国有国法,校有校规。这些法律规章是维系国家、学校的基本规则,国家要发展,学校要和谐,我们就要自觉遵守国法,自觉遵守校规。这是毫无疑义的。要自觉遵守校纪校规,做文明的学生,就要用智慧的双眼,清醒的头脑,理智的行为,看学校,看社会,去做事,去为人。我们还年轻,我们往往迷惘与清醒并存,我们要压抑着青春的激荡,要收敛年少的狂放,远离憧憬的诗行,抛弃感情的冲动,迈向理性,走向成熟。
三、适用对象:5~6岁幼儿。四、活动所需资源;每组一个托盘,盘内有一个空广口玻璃瓶、一碗石头(10块左右)、2/3碗小石子、l/3碗沙子、1/3碗水(矿泉水瓶也可)、一把小勺、一根筷子、画有玻璃瓶轮廓的记录纸和笔、指偶小兔。五、活动过程:让幼儿观察桌上摆放的实验用品:石头、小右子、沙子和水、一把小勺、一根筷子、画有玻璃瓶轮廓的纸和笔。说一说,石头、小石子、沙子和水有什么不同。
2.那用语言表达自己观察到的水的三态变化。 3.用多种感觉和体验水的变化的有趣和好奇。 活动准备:电热水壶一个、2人一块冰 活动过程: *小实验:水→蒸气:在孩子共同关注下,观察烧开水,水和蒸气互变现象,看看电热水壶口往外冒气时,把一个盘子放在壶口上会发生什么现象,观察蒸气凝成的小水珠。蒸气→水:看看盘子上有什么,小朋友可以把手掌触摸蒸气感受手的潮湿。 *让孩子看一看、闻一闻、摸一摸冰块,感知冰的特性,说一说冰块放在手心有什么感觉,你能拿冰块多久,看看冰块有什么变化?为什么会有这种变化? *小朋友很喜欢冰块,这些冰块被小朋友玩到融化了,你们回家可以做许多式样的冰块:彩色冰块、豆豆冰块、模型冰块…… 活动延伸: *孩子非常喜爱冰棍,由此引导孩子去探索冰凝固和冰融化的奥秘,既能染孩子进一步了解、感知冰的特征,有能满足孩子好奇心和求知欲,促进家园互动。 *小朋友回家做冰块玩。 活动过程的对话: 孩子们看到老师准备电热水壶,又打了水,都围起来看。 荣一郎说:“水是软软的。”小实验开始了,插电加热,很快水开了。 陈新说:“水壶唱歌了。” 张俊骞说:“水壶的嘴巴冒气了”。 老师说:“水壶的嘴巴冒气了,这个现象我们叫它什么?” 有小朋友说冒烟、 有小朋友说烧开水, 蓝钧说是小乌龟,与水联系上了。
注意强调概念理解不到位的方面:① tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”,若用三个字母表示角则“∠”不能省略,如“∠ABC的正切表示为tan∠ABC”;② tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比;③ tanA不表示“tan”乘以“A”。通过给出直角三角形的任两边的长,让学生求∠A,∠B的正切及时强化学生对概念的3、正切函数的应用理解通过实际问题的解答进一步了解梯子的倾斜程度、坡度与正切函数的关系;对学生进行正切的变式训练,让学生理解不管角的位置如何改变,只要角的大小不变则其正切值是不变的。练习的安插注意梯度,让不同的学生有不同的发展。4、最后小结本节课的知识要点及注意点五、达标测试具体思路:把几个问题分为四个等级,方便对学生的了解;通过评价让学生对自己的学习也做到心中有数。
一、说教材。《什么比猎豹的速度更快》是人教版五年级上册第二单元的一篇课文。这是一篇说明文。这篇文章按照由慢到快的顺序,介绍了9种事物的速度,向我们普及了科学知识。二、说学生。五年级的学生已经具备了一些相关的知识,也具备了一定的自学能力,因此,学生们在自学的基础上理解课文应该没问题。三、说目标。1.会认“隼、瀚”等5个生字,会写“冠、俯”等10个生字,掌握“冠”这个多音字,及“猎豹、鸵鸟”等词语。2. 快速阅读课文,理解课文内容,明白课文是按照事物由慢到快安排的写作顺序。
(一)教材分析本节课是在学生已经学过除法和分数的意义以及分数与除法的关系的基础上进行教学的。由于学生在理解比的意义上比较困难,教材并没有采取直接给出“比”的概念的做法,而是密切联系学生已有的生活经验和学习经验,提供了多种情境,引发学生的讨论和思考,让学生体会引入比的必要性,感受比在生活中的广泛存在,也为“比的应用”“比例”等后续学习做好铺垫。(二)教学目标在认真分析教材的基础上,结合学生实际,我从知识、能力、情感等方面拟定了本节课的教学目标:知识目标:经历从具体情境中抽象出比的过程,理解比的意义,能正确读写比,会求比值。能力目标:培养学生自主学习、独立思考,能利用比的知识解决一些生活中的数学问题。情感目标:引导学生广泛联系生活实际,充分感受数学知识的美与乐趣,激发学生的求知欲望。
说教学难点:图形的放大与缩小的原理是“大小改变,形状不变“。针对小学生的年龄和认知特点,教材中“图形的放大与缩小”从对应边的比相等来进行安排,而对应角的不变也是形状不变必备的条件,是学生体会图形的相似所必需的。学生在学习的过程中很有可能会质疑到这一问题。(为什么直角三角形只需要同时把两条直角边放大与缩小?)所以我把“学生在观察、比较、思考和交流等活动中,感受图形放大、缩小,初步体会图形的相似。(对应边的比相等,对应角不变)”做为本节课的难点。说教法、学法:通过直观演示,情景激趣,结合生活让学生形成感性认识;引导学生经过观察、猜想、分析、操作、质疑、小组交流、合作学习、验证等过程形成理性认识。教学过程:(略)
尊敬的老师、亲爱的同学们:大家早上好!大家知道今天是什么日子吗?今天是第20个“全国中小学生安全教育日“。从1996年起,我们国家确定每年3月份最后一周的星期一为“全国中小学生安全教育日”。今年的安全教育主题是“我安全、我健康、我快乐”。这一周也是第8个“福建省学校安全教育周“。今天我国旗下讲话的题目就是“我的安全我能行”。校园是人员密集的场所,校园安全关系到每个家庭的幸福。因此,创建平安校园是每一名老师和同学的共同心愿。大家还记得,XX年9月26日下午,昆明市北京路明通小学发生一起踩踏事故,造成学生6人死亡、26人受伤。事情的起因是头一天下午,该小学体育老师将两块体育教学使用的海绵垫子临时靠墙放置于学生午休宿舍楼一楼单元过道处。26日14时许,学校起床铃拉响后,该小学一、二年级午休学生起床后返回教室上课,由于靠墙的一块海绵垫平倒于一楼过道,造成通道不畅,先期下楼的学生在通过海绵垫时发生跌倒,后续下楼的大量学生不清楚情况,继续向前拥挤造成相互叠加挤压,导致严重伤亡。专家研究和实践证明:通过安全教育,强化安全管理,提高广大师生的自我保护能力,80%的意外伤害是完全可以避免的。
幂函数是在继一次函数、反比例函数、二次函数之后,又学习了单调性、最值、奇偶性的基础上,借助实例,总结出幂函数的概念,再借助图像研究幂函数的性质.课程目标1、理解幂函数的概念,会画幂函数y=x,y=x2,y=x3,y=x-1,y=x 的图象;2、结合这几个幂函数的图象,理解幂函数图象的变化情况和性质;3、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力.数学学科素养1.数学抽象:用数学语言表示函数幂函数;2.逻辑推理:常见幂函数的性质;3.数学运算:利用幂函数的概念求参数;4.数据分析:比较幂函数大小;5.数学建模:在具体问题情境中,运用数形结合思想,利用幂函数性质、图像特点解决实际问题。重点:常见幂函数的概念、图象和性质;难点:幂函数的单调性及比较两个幂值的大小.
各位老师、同学们,大家晚上好!时光荏苒,岁月不居;深秋尚未央,初冬已登场。在这黄花照暖阳的初冬美好日子,我们在**六中大礼堂隆重集会,召开****届高三倒计时动员大会,为高三级师生决胜高考、创造辉煌鼓劲加油。在此,我代表**六中全体师生向今天获得表彰的**等***名同学及高三*班等**个优秀班集体表示热烈的祝贺,向大家致以最美好的祝愿,祝愿****圆满成功、金榜题名!同学们、老师们,十年磨一剑,一朝显锋芒。今天,距****年高考仅有***天,高考报名工作即将完成。冬已临,春将至,从现在开始,我们已经进入到了高考时间,我们的逐梦征程已迈上了冲刺线,我们的奋进人生路踏上了关键拼搏点。奋斗的人生四季如歌,拼搏的生命精彩璀璨,同学们,高三是拼搏的高三,高三是冲刺的高三,高三是奋斗人生的高三,高三是奋斗人生中最值得、最需要付出的一段。在这个关键节点,在今天动员大会上,我向大家提出以下几点希望:
尊敬的各位评委老师:你们好,我是小学语文组__号,今天我说课的内容是四年级语文下册第12课《在天晴了的时候》。下面我将从说教材分析、学情分析、教学目标、教学重难点、教法和学法、教学过程、板书设计等七个方面进行我的说课。《在天晴了的时候》整首诗用拟人手法、形象的语言生动地描写了雨后天晴的景象,给我们勾画出一幅富有诗意的自然风光图,语言清新明快、优美形象。四年级的学生已经有一定的自悟能力,但要透过文字感悟文本背后蕴含的情感还存在一定差异。因此这就需要老师的巧妙引导、点拨,根据以上分析,结合课程标准对阅读教学的要求,我将本课教学目标定为:知识技能目标:能在具体的语言环境中,运用边读边想象,学习课文的表达方法,理解“锭透”“晕皱”等词语的意思。
2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?
(2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.
解析:因为减法和除法运算中交换两个数的位置对计算结果有影响,所以属于组合的有2个.答案:B2.若A_n^2=3C_(n"-" 1)^2,则n的值为( )A.4 B.5 C.6 D.7 解析:因为A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故选C.答案:C 3.若集合A={a1,a2,a3,a4,a5},则集合A的子集中含有4个元素的子集共有 个. 解析:满足要求的子集中含有4个元素,由集合中元素的无序性,知其子集个数为C_5^4=5.答案:54.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?解:(方法一)我们把从共线的4个点中取点的多少作为分类的标准:第1类,共线的4个点中有2个点作为三角形的顶点,共有C_4^2·C_8^1=48(个)不同的三角形;第2类,共线的4个点中有1个点作为三角形的顶点,共有C_4^1·C_8^2=112(个)不同的三角形;第3类,共线的4个点中没有点作为三角形的顶点,共有C_8^3=56(个)不同的三角形.由分类加法计数原理,不同的三角形共有48+112+56=216(个).(方法二 间接法)C_12^3-C_4^3=220-4=216(个).
4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).
探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.
3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.
一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。