一、工作目标: 1、加强宣传部的纽带作用,积极配合个方面的工作。加强各部门的联系,积极主动的行使宣传职能,为我校学生会的宣传工作再添亮点; 2、积极挖掘和培养宣传人才,为我校宣传工作注入更多新鲜血液; 3、充分利用好展板和橱窗栏,做好院会活动总结和宣传工作; 4、改革宣传部内部的运行机制。让每个人的能力都得以发挥,得以提高,拥有锻炼的空间;
过渡:在实际生活中,城市内部空间结构并非完全按照这一经济规律呈现,而是更具复杂性。这说明除了经济因素外,还有很多其他因素在起作用,请大家结合你的认识、图2.9和案例1:纽约市的少数民族区谈谈你的看法。(2)其他因素I.收入 —— 形成不同级别住宅区的常见原因。有能力支付昂贵租金和选择最佳居住环境的人,其居住地往往形成高级住宅区。II.知名度 ——城市内某些地区在历史、文化或经济方面具有很高的声誉,这往往会吸引更多新的住宅或商场建在该处,以提高其知名度。III.种族聚居区的形成 ——在有些城市的某一区域内,如果某个种族或宗教团体占优势,就可能形成种族聚居区。如纽约市的唐人街、哈林区、小意大利区等。IV历史因素——城市的建筑物和街道设计可以维持久远,早期的土地利用方式对日后的功能分区有着深远的影响。3、城市内部空间结构的形成和变化
设计意图:随着主题的不断深入,孩子们探索水里动物的兴趣越来越浓,在班内开展的“小舞台”问答活动中,孩子们提出许多充满童趣的问题,如:海豚为什么要救人?章鱼为什么要吐墨汁?小鲨鱼是怎么长大的?等等。针对孩子们的兴趣,结合我园的园本课程,尽可能挖掘其具有教育意义的素材。为此,在本次活动中,通过了解鱼类世界中大鱼照顾小鱼的不同方式,让我们的孩子在了解鱼类生活习性的同时,感受动物世界中的关爱情感,并引发孩子情感迁移,去了解现实生活中父母对自己的关爱,从而激发幼儿爱父母的情感。
2)许多幼儿做不习惯以自我为中心,合作意识不明显,突出地表现在游戏时不互相配合. 3)孩子入园一段时间后,跟班上老师,小朋友都熟悉了,为了创造更多的交往机会,让孩子在活动中有语言交往,愉快的情绪体验,我们设计了大带小游戏.这类活动对大孩子,小孩子都有益处. 活动目标:1.引导幼儿用多种方法跃过,钻过拉绳. 2.学习跟大孩子,小孩子交往合作游戏. 3.体验游戏中愉快的情绪. 活动过程: 一.引导幼儿互相问好.二.老师讲解游戏名称,方法:今天咱们一起玩绳游戏,每两个大班小朋友一组面对面拉绳,小小班小朋友从绳下跳或钻过去.
2、 知道火灾给我们的生活带来的危害。3、 丰富幼儿的防火知识。知道简单自救技能。活动准备:拼图图片三张,易燃物品标记,火警标记,严禁烟火标记个一。小小安全员标记人手一个。食物展示仪,图片。
2、大班幼儿对周围世界有着积极的求知探索态度,爱学好问,有极强的求知欲望。前段时期对我国航天七号上天非常感兴趣,喜欢问许多为什么?如:“航天飞机为什么会飞到月球上去?”;“月球上有没有人,有没有吃的东西”?;“人在月球上走路为什么会飘?等等,针对幼儿一个个的提问使我认识到,大班幼儿需要这方面的知识,我们应该进行满足,于是我用讲故事的形式向幼儿介绍了航天飞机上天的许多感人的事迹,帮助幼儿积累这方面的知识,同时为了进一步满足他们的好奇,我想通过身体运动让幼儿来扮演小小宇航员,让其亲身体验小小宇航员游戏的快乐。同时激发幼儿从小热爱科学、热爱英雄的情感。 一、运动目标:1、发展幼儿各种钻的基本动作,提高幼儿灵敏、协调能力。2、在运动中发展幼儿的想象力及合作能力。3、激发幼儿从小热爱科学、热爱祖国的情感。
2.培养幼儿的团队协作精神。 3.激发幼儿帮助他人的情感。 重点:发展幼儿身体的各种能力;难点:发展幼儿的平衡能力。 准备: 1、场地:梅花桩、隧道、竹梯 2、进口处形象标志:蓝猫、哪吒、超人,彩旗三面。 3、自制线路图,哨子、小猪、小狗、小猴头饰。 4、音乐:《铁臂阿童木之歌》、录音机。 活动过程: 一、集合幼儿、热身运动。 1. 小跑步进场(:整队、介绍队名、口号(队训) 师:队员们注意听口令:(1)跑步走、立停。(教师边吹哨子边喊口令) (2)请队员们排好队,准备做运动吧!(幼儿听音乐做韵律操) (3)向右转,三排起步走,右转弯走,到草地上集合:①各小队整队(三横队)、立正、稍息、立正。向右看齐、向前看。②各队介绍队名[一队:我们的队名是蓝猫队、二队:哪吒队、三队:超人队]。③我们的口号是:我们是最棒的!(给自己爱的鼓励)
4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).
探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.
二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√
2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?
(2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.
3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.
解析:因为减法和除法运算中交换两个数的位置对计算结果有影响,所以属于组合的有2个.答案:B2.若A_n^2=3C_(n"-" 1)^2,则n的值为( )A.4 B.5 C.6 D.7 解析:因为A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故选C.答案:C 3.若集合A={a1,a2,a3,a4,a5},则集合A的子集中含有4个元素的子集共有 个. 解析:满足要求的子集中含有4个元素,由集合中元素的无序性,知其子集个数为C_5^4=5.答案:54.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?解:(方法一)我们把从共线的4个点中取点的多少作为分类的标准:第1类,共线的4个点中有2个点作为三角形的顶点,共有C_4^2·C_8^1=48(个)不同的三角形;第2类,共线的4个点中有1个点作为三角形的顶点,共有C_4^1·C_8^2=112(个)不同的三角形;第3类,共线的4个点中没有点作为三角形的顶点,共有C_8^3=56(个)不同的三角形.由分类加法计数原理,不同的三角形共有48+112+56=216(个).(方法二 间接法)C_12^3-C_4^3=220-4=216(个).
2、积极参与操作活动,感受趣味艺术活动的快乐。 活动准备 1、操作材料:报纸球、颜料、油画棒 2、教学材料:课件、实物青菜,范画 活动过程 一、演示课件,看整块菜地 宝宝们看这是什么呀?在这块菜地里呀种了好多好多的青菜。 二、出示实物青菜,认识菜帮子和菜叶。 1、今天呀,菜地里的青菜宝宝要到我们小(3)班来做客,让我们一起来欢迎他吧。 2、扮演青菜宝宝和小朋友打招呼“小(3)班的宝宝你们好!” 3、那你们知道青菜宝宝长的是什么样子的,他的身上有什么呢?引导幼儿说出菜叶和菜根。他呀是由上下两部分组成的,上面的是菜叶,下面的是菜根。 4、青菜宝宝是什么颜色的?(绿色) 4、那你们这个青菜是谁种出来的呀?(农民伯伯)
一、听课要求 (一)听课节数: 校长、教导主任:每学期听课不少于20听课要覆盖所有学科和所有年级。 教师:听课不少于10节,参加教育工作五年以内(含五年)的教师每学期听课不少于15节。 (二)听课形式: 1.独立听课。学校领导可随时到班听“推门课”。教师之间独立听课可以协商进行。 2.集体听课。校级或教研组组织的公开课、观摩课、汇报课等。 3.外出学习听课。 (三)听课要求: 1.听课前,原则上应该先自行调好自己的课程,如有自己解决不了的问题请教导处协调,千万不能因教师听课而耽误学生的学习。 2.教研组以上的集体听课,教研组长及所在班的班主任应协助做好听课准备工作,如时间的安排、地点的安排、电教设备、学生的准备等。 3.听课时,教师要提前5分钟进入教室,不讲话、不走动、关闭通信工具。如无特殊情况不中途离场,以示对执教者的尊重。 4.要认真做好听课记录。教师要做好详细记录,所有听课者都应写听课简评。
第一,全面的家访,深入到每一个家庭细致了解,与家长学生面对面的交流,加强了社会,家庭,学生的联系,了解了家长的期望与要求。了解了学生的个性与想法,加强了师生感情,家访对以后的工作将起到积极的作用。 第二,全面的家访,了解了家长对子女的关切与期望,也了解了一些学生家庭的困境,增强了我们的责任感,也让我们更加热爱学生,热爱工作。 第三,交换访谈方式,为家访工作增加新的内涵。随着社会的发展,家访的'方式也随着改变。由于人们的职业特点、个人阅历、经济状况、文化素质、思想修养、性格脾气各不相同,学生家长可分为好多不同的类型。作为班主任应该具体问题具体分析,“到什么山唱什么歌”。
有位老师说得好:“其实,一生都是在路上。拥有一颗快乐的心,再长的道路都可以一路欢歌;拥有一种愉悦的心境,漫长的路上可以是一道道灿烂的风景。” 给心灵以春光,拥有好心情,这样就会更喜欢出发。其实,人生就是一次次出发。从小学出发,我们的目的地是初中;从初中出发,我们的目的地是高中;从高中出发,我们的目的地是高等学府……人生无穷尽,出发无止境。
活动内容:① 已知,如图,在三角形ABC中,AD平分外角∠EAC,∠B=∠C.求证:AD∥BC分析:要证明AD∥BC,只需证明“同位角相等”,即需证明∠DAE=∠B.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分线的定义)∴∠DAE=∠B(等量代换)∴AD∥BC(同位角相等,两直线平行)想一想,还有没有其他的证明方法呢?这个题还可以用“内错角相等,两直线平行”来证.
1、教学对象,九年级学生,实践课 2、近几年随着体育加试的进行,尤其是今年又把跳绳例如体育加试项目。九年级学生,通过前段时间的学习,体能普遍较好,对跳绳有关的练习方式都有较强的兴趣。 跳绳方面,基本的正摇跳,长绳的双人摇跳、多人摇跳等技术动作有较好的基础。大部分学生具备了向较高一层次难度发展的条件。比如:正摇跳,长绳的双人摇跳、多人摇跳多跳等,这些技术动作学生都有较浓的兴趣。 3、另外中考体育加试的需要,学生学习跳绳的热情、组织纪律、认识能力、身体素质相对其他年级有一定的优势。因此,我根据学生的实际情况,安排本节课的内容,让学生能更好的接受本次课的教学。另一方面,九年级学生正处自身发育的高峰期,灵敏,协调素质的快速增长有可性强的特点,跳绳恰好有此方面的锻炼价值,这更增加提高了学生对跳绳的热爱。同时也使我国民间体育得到更好的发展。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。