二、活动准备 画有“〈”“〉”符号卡片两张、1—10数字卡一套、苹果卡片三张、桃子卡片两张、粉笔三支、铅笔一支、练习题每人三张。 三、活动过程 (一) 引出主题,认识大于号 “>” 和小于号 “<”。 1. 教师边出示 “>” 和 “<” 的卡片,边说:“今天老师带来两个好伙伴给你们认识,你们认识他们吗?” 2. 教师出示大于号 “>” (1) 教师:它叫大于号,开口向左,跟着老师念:大于号,开口向着大数笑。 (2) 教师举例,在黑板上写出3 >1,读作三大于一,跟着老师再念一遍,大于号,开口向着大数笑。 3. 教师出示小于号 “<” (1) 教师:它叫小于号,开口向右,跟着老师念:小于号,尾巴对着小数翘。 (2) 教师举例:在黑板上写出2<4,读作二小于四,跟着老师再念一遍,小于号,尾巴对着小数翘。
2、 引导幼儿学习按标记表示的差异个数找图形。 3、 培养幼儿分析、综合和解决总是的能力。 教学准备: 1、 录音机、磁带 2、 60—70CM长的绳子若干根 3、 小鸡衣服若干件、老鹰衣服一件 4、 小鸡笼2只 5、 鸡妈妈胸饰一只 教学过程: 一、游戏导入,引起幼儿的兴趣和情绪 1、 T:看,你们穿上衣服后都变成了谁?我变成了谁?我们来玩个《老鹰抓小鸡》的游戏,好吗? 2、 介绍游戏规则,教师与幼儿玩游戏,并在游戏的过程中教师抓住四只小鸡。(放音乐与幼儿游戏)
2、 在游戏中,尝试用筷子夹食物,体验美味食物带来的乐趣,并会分享食 物。3、 激发幼儿使用筷子的乐趣。活动准备:1、 红、黄、蓝、粉四种颜色图案的筷子。2、 四种颜色的插筷筒,三种图案的插筷筒。3、 各种水果切成块。4、 人手一个碟子,一双筷,四个插筷筒。5、 录音机、磁带。重点:配对、分类及使用筷子。难点:使用筷子。活动过程:一、 导入情景1、(出示小熊)小朋友,你们好!今天我想邀请你们去我家做客,你们愿意吗? 2、但是我遇到困难了,你们帮帮我,好吗?二、学习配对1、(出示筷子)你们看,这是什么啊?2、小熊想请我们小朋友给筷子找好朋友,请你们帮他找找好朋友,好吗? 3、请你从后面的桌子上找到一支一模一样的筷子做他的好朋友,好吗? 4、现在请你们从小椅子下面找到筷子,然后去后面找到他的好朋友! 5、幼儿活动――配对。6、 “xxx,请你说说,你为什么找他做好朋友?”(请2-3名幼儿)7、 原来你们是因为他们的颜色和图案一样,才找他们做好朋友的,你们的小眼睛可真亮啊!三、学习分类1、 那你找到筷子的家在哪里吗?2、 <BR><P></P>(出示插筷筒)你们看,这就是筷子的家,它叫插筷筒。它们有什么不同啊?(颜色)这个是什么颜色啊?那这个呢?那就请你把你的筷子送回家,好吗?待会请你们轻轻地把筷子送回家,要有秩序,一个一个放,千万不要把他们送错家了。3、 幼儿活动――分类。4、 请你们看看筷子的家找对了吗?(如找错了,请一名幼儿再找,并说说为什么?)5、 哇,我们小朋友可真棒啊!把红筷子送到了红色的插筷筒里,把黄筷子送到了黄色的插筷筒里,把蓝筷子送到了蓝色的插筷筒里,把粉色的筷子送到了粉色的插筷筒里,真厉害!6、 但是,筷子想找新家了。瞧!这就是他们的新家,他们有什么不同啊?(图案)这个是什么图案?这个呢?对了,一个上面是花花的,一个有蝴蝶,还有一个上面有绿色的图案。7、 现在请你给这些筷子找新家。你喜欢什么样的筷子,你就轻轻地把他从老家拿出来,然后再把他送到新家,好吗?要一个一个有秩序,不然你把筷子弄疼了,他就不理你了。8、 幼儿活动――再次分类。9、 请你们看看筷子的家找对了吗?(如找错了,请一名幼儿再找,并说说为什么?) 10、哇!你们的小眼睛可真亮啊!比孙悟空还厉害啊!
2、正确判断并找出一模一样的物品。 活动准备: 教具:橙边大卡片4张、红边大卡片16张(4组,每组4张)、小猴大卡片1张、磁铁(自备)。 幼儿材料:<超市购物>游戏图、<购物单>卡片。活动过程:一、引入活动 1、介绍新朋友。 师:“小朋友,你们看今天有一位客人来这里,它是谁?” 2、欢迎新朋友。 师:“哦!我们对它表示欢迎吧!”(师带领幼儿一起鼓掌) 3、为新朋友起名字。 师:(拿起小猴子大卡片遮住脸,声音稍变,模仿小猴子)说:“你们好,小朋友!你们认识我吗?知道我叫什么名字吗?帮我取一个吧?”(老师挑一个幼儿起的名字运用,如‘花花’等)
2.能观察、比较出相同的颜色、形状、大小。 3.愿意参加操作活动,并用语言表达自己的操作过程和结果。 活动准备: 小房子图片(3张),小动物图片(小兔子、小熊、小猫),幼儿操作卡片 活动过程: 1.故事的方式,引出课题 森林里住着3只小动物他们非常的贪玩,每次一跑出去玩就不知道回家了。每次他们 妈妈都是东找西找的,有好几次都急的哭了。可是这3只小动物啊,还是不知道改正这个错误。这件事情啊,被森林里面的智慧爷爷知道了非常气。于是,智慧爷爷就告诉这3只小动物,:“你们不听妈妈的话,每次出去玩都不知道回家,你们做错了事情,还不知道改正,那就要受到惩 罚了。我已经把你们回家的路给没收了,每条路只留了前面几块砖,除非你们找出规律并且正确的把砖铺对了,才能再回到家里。”3个小动物一听,就嗷嗷大哭起来,这可怎么办啊。后悔自己没有听妈妈的话早点回家,他们呀就做在一起想啊想啊,想怎么把回家的路铺好,可是三个小动物伤透了脑筋也想不出来,一直在哭着,就想请你们来帮帮他们回到家,小朋友愿意帮忙吗? 评析:用故事导入的形式,设置问题,去帮小动物来铺路引起幼儿铺路的兴趣,为整个活动的有序开展奠定了基础。 2.启发幼儿观察小路,并发现其中的排列规律。 (1)出示接龙卡:小兔铺路用的砖头上有什么图形?每块砖上面图形的颜色一样吗? (2)教师示范铺路,小兔铺的路是黄色和黄色手拉手,接下来该铺哪一块砖?为什么铺这块? (3)教师小结:原来小兔铺的路是按照一样颜色和一样颜色手拉手的。 评析:这一环节教师以合作者的身份与幼儿共同活动,通过教师的操作,让幼儿来发现其图形接龙的规律知道相同颜色的图形接在一起。
2、通过操作活动,发展和探索简单的排序规律。 3、体验操作活动的快乐。 活动准备: 1、教具准备:小白兔玩偶一个,彩色项链(3条),小星星。 2、学具准备:“小星星”。 3、《操作册》第一册第7页。 活动过程: 一、导入活动,引起兴趣。 咦,谁来啦?(小白兔)今天小白兔到我们小(2)班想请大家帮一个忙,让张老师来问一问。 小白兔:今天是我妈妈的生日,我要去帮妈妈买一条项链,你们帮我一起去挑一条漂亮的项链送给我妈妈,好吗? 二、集体活动。
【活动准备】1、课前做老鹰捉小鸡的游戏。2、磁性教具:小房子1座,小白兔1只,许多萝卜(个数与幼儿人数相等)。3、小篮子1只。 【教学过程】一、开始部分: 语言导入:“今天老师给小朋友讲一个新故事,小朋友要认真听,我们来比一比哪位小朋友听得最认真。” 二、基本部分:1、教师边讲述故事《小兔拔萝卜》,边演示磁性教具,帮助幼儿认知“1”和“许多”。 教师:“在很远很远的地方有一座小房子(出示磁性教具小房子),房子里面有一位小主人,你们看它是谁?(出示磁性教具小白兔)。 小朋友:“小白兔” 教师:“这是几只小白兔?” 小朋友:“1只” 教师出示萝卜问:“这只小白兔在干什么呀?”(出示磁性教具萝卜)。 小朋友:“拔萝卜” 教师:“小白兔的萝卜地里有多少萝卜?” 小朋友:“许多萝卜。”
目标: 1、乐意参与3以内的数数活动,初步理解数的实际意义。 2、体验去朋友家做客的快乐。 准备: 1、布置家的场景:物品按数量1、2、3一组分散放于三个柜中。1——3数字宝宝图片(粘于椅子上) 2、水果一篮 3、歌曲:看朋友、找朋友 过程: 1、带礼物去看朋友 交代:今天去看朋友,但要带什么礼物去呢? 模仿开汽车,边唱歌:看朋友,到数字宝宝家。 敲门,进去,和数字宝宝打招呼。 个别提问:你在和谁打招呼?
幂函数是在继一次函数、反比例函数、二次函数之后,又学习了单调性、最值、奇偶性的基础上,借助实例,总结出幂函数的概念,再借助图像研究幂函数的性质.课程目标1、理解幂函数的概念,会画幂函数y=x,y=x2,y=x3,y=x-1,y=x 的图象;2、结合这几个幂函数的图象,理解幂函数图象的变化情况和性质;3、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力.数学学科素养1.数学抽象:用数学语言表示函数幂函数;2.逻辑推理:常见幂函数的性质;3.数学运算:利用幂函数的概念求参数;4.数据分析:比较幂函数大小;5.数学建模:在具体问题情境中,运用数形结合思想,利用幂函数性质、图像特点解决实际问题。重点:常见幂函数的概念、图象和性质;难点:幂函数的单调性及比较两个幂值的大小.
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.3.2节《对数的运算》。其核心是弄清楚对数的定义,掌握对数的运算性质,理解它的关键就是通过实例使学生认识对数式与指数式的关系,分析得出对数的概念及对数式与指数式的 互化,通过实例推导对数的运算性质。由于它还与后续很多内容,比如对数函数及其性质,这也是高考必考内容之一,所以在本学科有着很重要的地位。解决重点的关键是抓住对数的概念、并让学生掌握对数式与指数式的互化;通过实例推导对数的运算性质,让学生准确地运用对数运算性质进行运算,学会运用换底公式。培养学生数学运算、数学抽象、逻辑推理和数学建模的核心素养。1、理解对数的概念,能进行指数式与对数式的互化;2、了解常用对数与自然对数的意义,理解对数恒等式并能运用于有关对数计算。
学生已经学习了指数运算性质,有了这些知识作储备,教科书通过利用指数运算性质,推导对数的运算性质,再学习利用对数的运算性质化简求值。课程目标1、通过具体实例引入,推导对数的运算性质;2、熟练掌握对数的运算性质,学会化简,计算.数学学科素养1.数学抽象:对数的运算性质;2.逻辑推理:换底公式的推导;3.数学运算:对数运算性质的应用;4.数学建模:在熟悉的实际情景中,模仿学过的数学建模过程解决问题.重点:对数的运算性质,换底公式,对数恒等式及其应用;难点:正确使用对数的运算性质和换底公式.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入回顾指数性质:(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么对数有哪些性质?如 要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
对数与指数是相通的,本节在已经学习指数的基础上通过实例总结归纳对数的概念,通过对数的性质和恒等式解决一些与对数有关的问题.课程目标1、理解对数的概念以及对数的基本性质;2、掌握对数式与指数式的相互转化;数学学科素养1.数学抽象:对数的概念;2.逻辑推理:推导对数性质;3.数学运算:用对数的基本性质与对数恒等式求值;4.数学建模:通过与指数式的比较,引出对数定义与性质.重点:对数式与指数式的互化以及对数性质;难点:推导对数性质.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入已知中国的人口数y和年头x满足关系 中,若知年头数则能算出相应的人口总数。反之,如果问“哪一年的人口数可达到18亿,20亿,30亿......”,该如何解决?要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。2.掌握判定函数和函数相等的方法。3.学会求函数的定义域与函数值。数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。重点:函数的概念,函数的三要素。难点:函数概念及符号y=f(x)的理解。
师:你们还知道哪些地方没有保持安静的标志,同样需要我们小点儿声?(校园的走廊、电梯、商场、餐厅等) 师:孩子们都有一双善于发现的眼睛。能够找到我们身边需要保持安静的场所。不论是学校、公园还是商场、银行。这些地方都是公共场所,虽然没有保持安静的的标志,我们也要小点儿声。那么,是不是这些地方我们就不能说话了呢? 5、课件出示电梯场景 师:这,是我们非常熟悉的电梯。丽丽和她的2个伙伴正乘坐电梯去上班,这时候他们可以聊天吗?为什么? 师:当电梯来到11楼,又进来的2个人,这是他们应该怎么做呢? 生:调节自己聊天的音量,不打扰其他人乘坐电梯。 师:公共场所不是不可以讲话,只是要根据实际情况调节自己的音量,不影响他们,就是文明的行为。
对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
导语在必修第一册中,我们研究了函数的单调性,并利用函数单调性等知识,定性的研究了一次函数、指数函数、对数函数增长速度的差异,知道“对数增长” 是越来越慢的,“指数爆炸” 比“直线上升” 快得多,进一步的能否精确定量的刻画变化速度的快慢呢,下面我们就来研究这个问题。新知探究问题1 高台跳水运动员的速度高台跳水运动中,运动员在运动过程中的重心相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t2+4.8t+11.如何描述用运动员从起跳到入水的过程中运动的快慢程度呢?直觉告诉我们,运动员从起跳到入水的过程中,在上升阶段运动的越来越慢,在下降阶段运动的越来越快,我们可以把整个运动时间段分成许多小段,用运动员在每段时间内的平均速度v ?近似的描述它的运动状态。
4.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有8个红球,3个白球,从中任取5个球,其中所含白球的个数为X.(2)一个袋中有5个同样大小的黑球,编号为1,2,3,4,5,从中任取3个球,取出的球的最大号码记为X.(3). 在本例(1)条件下,规定取出一个红球赢2元,而每取出一个白球输1元,以ξ表示赢得的钱数,结果如何?[解] (1)X可取0,1,2,3.X=0表示取5个球全是红球;X=1表示取1个白球,4个红球;X=2表示取2个白球,3个红球;X=3表示取3个白球,2个红球.(2)X可取3,4,5.X=3表示取出的球编号为1,2,3;X=4表示取出的球编号为1,2,4;1,3,4或2,3,4.X=5表示取出的球编号为1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5个球全是红球;ξ=7表示取1个白球,4个红球;ξ=4表示取2个白球,3个红球;ξ=1表示取3个白球,2个红球.
3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.
一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。