活动目标1 、教幼儿学会用积极的态度去面对生活,学会与同伴友好相处。 2 、教幼儿在日常生活中学会思考解决问题的方法,知道高兴快乐有利于身体健康。 渗透目标培养幼儿的自我控制能力,为养成活泼开朗的性格奠定基础。 活动准备1、多媒体《别来烦我》 2、微笑卡,音乐磁带,录音机 3、区域活动准备工作
准备: 1、经验准备:幼儿解吸烟对人体健康的危害。 2、材料准备: 教师:棉花、香烟、瓶子; 幼儿:大型积木,剪刀,纸,食品包装,记号笔,禁烟标志等。 过程: 一、通过做实验,感受空气的重要性。 1、捏紧鼻子,闭紧嘴巴,说一说有什么感觉?(不能呼吸感到非常的难受。) 2、深呼吸一次,现在感到怎么样?(感受空气对人的重要性。) 二、感知香烟对人类的危害。 1
1、知道关节能使身体弯曲,对人体活动有重要作用。2、学会简单保护关节的方法。 活动材料与相关环境创设: 纸夹板、纸夹长臂、线绳、水彩笔若干、大型积木一套。 图书区投放与人体关节骨骼有关的书。《幼儿用书》中画有人体关节图人手一张。 教师录制幼儿生活和游戏中推、拉、拽和不注意自我保护的现象。 活动准备: 对人体骨骼有初步的了解与认知。 引导幼儿观察讨论:有关人体各部位能弯曲变化的问题。 教师录制幼儿生活和游戏中推、拉、拽和不注意自我保护的现象。 活动过程:1、教师带幼儿在户外练习跳绳、玩“高矮人”游戏后回班讨论:绳子是怎样摇起来的?人为什么能变高变矮?(摇绳时靠臂的什么部位,下蹲或站起时靠腿的什么部位)引发幼儿认识人体的关节。
2、了解生命是有限的,生命失去了就不会再来,应该珍惜生命。教学重点、难点、关键点:重点:知道生命是有限的,生命失去了就不会再来,应该珍惜生命。难点:知道生命是有限的,生命失去了就不会再来,应该珍惜生命。关键点:通过探自己的生命历程,了解成长的不易,知道自己的生命承载了许多亲人的爱和期望。课前准备:1、调查访谈:(含采访记录)①、找一找妈妈怀孕时的照片或者当时的录像,看看那时侯妈妈的样子与妈妈怀孕以前的照片以及现在的样子有什么不同?②问问爸爸、妈妈,当你还在妈妈肚子里的时候,他们有些什么想法、感受和期盼,为了生个聪明健康的宝宝,他们是怎样做的?③、问一问爸爸、妈妈、爷爷、奶奶或者其他家人,你出生的那一天,他们是怎样度过的?在你即将出世的时候,他们的心情如何?在你出生的那一刻,在第一眼看到你时,他们的心情又怎样?④、找出出生记录或成长册,看看刚出生时自己的体重和身长各是多少,请家长说说当时自己是什么样的。找找小时侯的衣服、鞋帽和自己不同年龄的照片,请家长讲一讲在你成长过程中,家长印象最深的一件或几件事。想一想,我们的生命仅仅属于我们自己吗? 2、实物投影。 3、录音机。 4、简单的课件。教学过程:一、导入:珍惜生命,永不放弃生的希望,这是对自己、对社会负责任的表现。因为每一个生命的诞生都会给许多人带来快乐和幸福。板书课题。 1、要求根据课前的调查访谈提示的准备,每人选择其中一个选题,在所在的小组里发言,并选出代表,准备在班里汇报成果。 2、把自己收集到的照片、实物(衣服、小手印……)、录像、图画等介绍给组里的同学。把自己在访谈过程中感受最深的事情讲给小组同学听,并谈谈经过这次调查访谈,自己有哪些感触。 3、组长组织组员准备在全班进行汇报展示。每个小组可以用不同的形式,将全组同学的资料进行整理,如照片展、服装展、录像展、图画集、故事集等多种形式。 4、集体汇报展示、交流。小结:自己能够为他人带来欢乐,所以要珍惜生命,肯定自己生命的价值。(课件出示)
准备 儿童玩具皮球、粉笔等。 过程 1.幼儿自由地拍球、熟悉拍球的动作。 2.每个幼儿照着老师的范例,在场地上用粉笔画一个大图案(要求图案中有好多格子),然后进行拍球练习,拍球时球不能压到线。
学习内容:跳短绳学习步骤:一、 自主游戏,活跃情绪教师活动:1、组织学生集队、队列2、提出要求,观察学生分组游戏。学生活动:1、看老师手势,听老师口令快速集队,并从集队中体验“快、静、齐”的集队要求。 2、听口令进行行进练习,比一比小排头带得好还是大排头带得好。 3、两人一组剪刀、石头、布游戏,输的小朋友要带领赢的小朋友做一个动作。 4、学生自己进行柔韧练习(自叫节拍,自想动作)组 织:五路纵队、自由分散 * * * * * * *
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.2正弦型函数. *创设情境 兴趣导入 与正弦函数图像的做法类似,可以用“五点法”作出正弦型函数的图像.正弦型函数的图像叫做正弦型曲线. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 5*巩固知识 典型例题 例3 作出函数在一个周期内的简图. 分析 函数与函数的周期都是,最大值都是2,最小值都是-2. 解 为求出图像上五个关键点的横坐标,分别令,,,,,求出对应的值与函数的值,列表1-1如下: 表 001000200 以表中每组的值为坐标,描出对应五个关键点(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲线联结各点,得到函数在一个周期内的图像(如图). 图 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 15
重点分析:本节课的重点是离散型随机变量的概率分布,难点是理解离散型随机变量的概念. 离散型随机变量 突破难点的方法: 函数的自变量 随机变量 连续型随机变量 函数可以列表 X123456p 2 4 6 8 10 12
从管理育人的高度建设节约型校园老师、同学们:大家好!墨子讲过这样一句话:俭节则昌,淫佚则亡。唐代诗人李商隐也有同样的诗句:历览前贤国与家,成由勤俭破由奢。这些前贤告诉我们,治国、理家、治理一个学校,一个人的成长,节俭是多么的重要。目前,我国正在实现现代化,资源短缺和经济迅速发展的矛盾十分尖锐,建设节约型社会十分迫切。我们学校是一所新学校,尽管开发区财政给予了极大的支持,同学们在宿舍水电使用方面不需要付费。这样的情况在周边学校,包括我们的近邻厦大,都是要按计量付费。这么优越的条件,同学们应常怀感恩之心。但同学们并不全是这样,上学期学校持续性抓了宿舍节约用水用电,每个月公布每间宿舍水、电使用量,对水、电浪费最多的三个宿舍进行过通报批评,最后两个月甚至点名到班到宿舍到人。就这样,每月都会出现一些浪费的典型。去年12月的数字显示,6号宿舍楼504宿舍(高一1班)热水用量为吨,是6号楼平均值吨的倍。
从管理育人的高度建设节约型校园老师、同学们:大家好!墨子讲过这样一句话:俭节则昌,淫佚则亡。唐代诗人李商隐也有同样的诗句:历览前贤国与家,成由勤俭破由奢。这些前贤告诉我们,治国、理家、治理一个学校,一个人的成长,节俭是多么的重要。目前,我国正在实现现代化,资源短缺和经济迅速发展的矛盾十分尖锐,建设节约型社会十分迫切。我们学校是一所新学校,尽管开发区财政给予了极大的支持,同学们在宿舍水电使用方面不需要付费。这样的情况在周边学校,包括我们的近邻厦大,都是要按计量付费。这么优越的条件,同学们应常怀感恩之心。但同学们并不全是这样,上学期学校持续性抓了宿舍节约用水用电,每个月公布每间宿舍水、电使用量,对水、电浪费最多的三个宿舍进行过通报批评,最后两个月甚至点名到班到宿舍到人。就这样,每月都会出现一些浪费的典型。去年12月的数字显示,6号宿舍楼504宿舍(高一1班)热水用量为吨,是6号楼平均值吨的倍。吨热水,水费为55元,从10°c加热到50°c,需耗电1230度,电费为650元,这个数字可是不小!
二、流动镶嵌模型的基本内容1、膜的成分2、膜的基本支架3、膜的结构特点4、膜的功能特性设计意图:我根据板书的“规范、工整和美观”的要求,结合所教的内容,设计了如图所示的板书,使学生对本节课有一个整体的思路。八、教学反思:本节课我创设了问题情境来引导学生主动学习,利用了多媒体信息技术激发学生的学习热情,调动了学生的积极性,成功实现预期的教学目标。体现了学生为主体地位的新课程理念。启发式、探究式的教学方法以及由教师指导下的学生自主阅读、合作交流的学习方法把学生从死记知识的苦海中解救出来。初次的尝试还存在一定的缺陷,学生不能够很好的把知识和习题联系,只是把他所知道的知识简单罗列,不能够体现出能力的训练。在上课中发现学生比较腼腆或拘束,声音比较小,表达不能到位。尽管本节课存在诸多不足之处,但是也让我看到了闪光点:学生比较欢迎这样一堂自己是主角的课堂。
本节通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。课程目标1.能利用已知函数模型求解实际问题.2.能自建确定性函数模型解决实际问题.数学学科素养1.数学抽象:建立函数模型,把实际应用问题转化为数学问题;2.逻辑推理:通过数据分析,确定合适的函数模型;3.数学运算:解答数学问题,求得结果;4.数据分析:把数学结果转译成具体问题的结论,做出解答;5.数学建模:借助函数模型,利用函数的思想解决现实生活中的实际问题.重点:利用函数模型解决实际问题;难点:数模型的构造与对数据的处理.
本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》的第五章的4.5.3函数模型的应用。函数模型及其应用是中学重要内容之一,又是数学与生活实践相互衔接的枢纽,特别在应用意识日益加深的今天,函数模型的应用实质是揭示了客观世界中量的相互依存有互有制约的关系,因而函数模型的应用举例有着不可替代的重要位置,又有重要的现实意义。本节课要求学生利用给定的函数模型或建立函数模型解决实际问题,并对给定的函数模型进行简单的分析评价,发展学生数学建模、数学直观、数学抽象、逻辑推理的核心素养。1. 能建立函数模型解决实际问题.2.了解拟合函数模型并解决实际问题.3.通过本节内容的学习,使学生认识函数模型的作用,提高学生数学建模,数据分析的能力. a.数学抽象:由实际问题建立函数模型;b.逻辑推理:选择合适的函数模型;c.数学运算:运用函数模型解决实际问题;
新知讲授(一)——古典概型 对随机事件发生可能性大小的度量(数值)称为事件的概率。我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型。即具有以下两个特征:1、有限性:样本空间的样本点只有有限个;2、等可能性:每个样本点发生的可能性相等。思考一:下面的随机试验是不是古典概型?(1)一个班级中有18名男生、22名女生。采用抽签的方式,从中随机选择一名学生,事件A=“抽到男生”(2)抛掷一枚质地均匀的硬币3次,事件B=“恰好一次正面朝上”(1)班级中共有40名学生,从中选择一名学生,即样本点是有限个;因为是随机选取的,所以选到每个学生的可能性都相等,因此这是一个古典概型。
4.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有8个红球,3个白球,从中任取5个球,其中所含白球的个数为X.(2)一个袋中有5个同样大小的黑球,编号为1,2,3,4,5,从中任取3个球,取出的球的最大号码记为X.(3). 在本例(1)条件下,规定取出一个红球赢2元,而每取出一个白球输1元,以ξ表示赢得的钱数,结果如何?[解] (1)X可取0,1,2,3.X=0表示取5个球全是红球;X=1表示取1个白球,4个红球;X=2表示取2个白球,3个红球;X=3表示取3个白球,2个红球.(2)X可取3,4,5.X=3表示取出的球编号为1,2,3;X=4表示取出的球编号为1,2,4;1,3,4或2,3,4.X=5表示取出的球编号为1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5个球全是红球;ξ=7表示取1个白球,4个红球;ξ=4表示取2个白球,3个红球;ξ=1表示取3个白球,2个红球.
对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
(一)心态失衡,思想观念落后。部分群众在因循守旧,不患贫而患不均,思想还停留在计划经济时期,思想观念难以适应形势发展,心理和经济承受能力较低,心态失衡,对两极分化不满情绪增大。还有部分群众全局观念淡薄,喜欢走“上层路线”,对基层干部不信任,认为只有上面的领导才会公正、公平。 (二)利益驱动,故意制造事端。少数群众受利益驱动,组织策划群众上访,煽动群众闹事,以便自己从中获利。如因集体资源、宗派利益等产生磨擦,就故意挑起矛盾,煽动群众闹事。有的是为了博得群众对自己的信任,让上级觉得自己有能力处理各种棘手之事。还有的为了达到自己的目的,千方百计制造事端,激发矛盾为自己非法谋利提供条件。只要出现一定规模的上访,一般都存在着组织者、领导者。
环节四 课堂小结 巩固知识本节课我采用线索性的板书,整个知识结构一目了然,为了充分发挥学生在课堂的主体地位,我将课堂小结交由学生完成,请学生根据课堂学习的内容,结合我的板书设计来进行小结,以此来帮助教师在第一时间掌握学生学习信息的反馈,同时培养学生归纳分析能力、概括能力。环节五 情景回归,情感升华我的实习指导老师告诉过我们,政治这一门学科要从生活中来到生活去,所以在课堂的最后布置课外作业,以此培养学生对理论的实际运用能力,同时检验他们对知识的真正掌握情况,以此达到情感的升华,本节课,我根据建构主义理论,强调学生是学习的中心,学生是知识意义的主动建构者,是信息加工的主体,要强调学生在课堂中的参与性、以及探究性,不仅让他们懂得知识,更让他们相信知识,并且将知识融入到实践当中去,最终达到知、情、意、行的统一。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。