教材分析义务教育课程标准实验教科书数学(人教版)一年级上册,把8和9的认识放在同一节课中完成,编排与前面6和7的认识基本上一样,只是要求更高。教材中提供给学生数数的资源虽不如6和7明显,却更丰富。提供给学生数数的对象是以“热爱自然,保护环境”为主题的生动画面,其内容有人、花、树、花盆、蝴蝶、黑板上的字等。画面除数数外,还体现了环保教育的主题。8和9的序数意义仍是采取6和7的编排方法,不同的是让学生更具体地感受几和第几的意义的不同。学生分析班上学生对数学学习的兴趣浓厚,敢想、敢说、敢问,思维活跃。低年级学生好奇心强,渴望动手参与的愿望强烈,为了让学生主动参与到学习过程中来,我根据一年级学生的心理特点,在学习6和7的认识时,我就尝试让学生课前收集了一些生活中的6和7,并制成剪贴图。没想到学生的信息量还挺大,制成的剪贴图也很生动、活泼。但在认识6和7的序数意义时,有一些不足,有一部分学生对几和第几的概念还有些模糊。
学习8、9的组成以后,如何牢固掌握至关重要。我采用拍手游戏、找朋友、对口令的形式深化学生记忆。教师说7,学生对1,7和1组成8。除了师生互对,同桌之间也可以对口令、做拍手游戏。这样教学设计能够使师生互动,拉近师生距离,又能充分调动学生的学习热情,培养学生爱数学的情感。(四)找朋友在本节课结束之时,我组织学生做找朋友的游戏。教师把8张数字卡片发给8个学生,让他们面对面站好,要求他们找到朋友以后手中的数字卡片组成8。其他学生一起倒计时,5、4、3、2、1。瞬间8个学生都各自找到了自己的朋友,教室里一片欢腾。这样教学设计再次深化了本节课的教学内容,所学知识进一步得到了升华,孩子们对8、9组成的记忆将牢记心中。
为了让学生灵活地掌握知识,在这我设计了一个“摆花片“的活动,让学生拿出1个黄色花片和7个红色花片,学生任意摆成一行,摆好后说一说是怎样摆的,黄花片摆在第几,并鼓励学生向同桌介绍一下自已的摆法。(通过这一活动,培养费了学生的动手能力,语言表达能力和思维能力)四、巩固练习1、基础练习:课本23页练一练第1题,“共有()朵花,从左数分别把第2朵和第6朵涂上不同的颜色,让学生进一步巩固几个和第几的含义。2、针对性练习:右以让学生说说各位车手的名次,再连线,这道题的侧重点是比赛地顺序。有针对性的巩固第几的含义。3、综合应用练习:最后组织学生做游戏,从左数第3排的同学站起来;对着老师这排的前4个同学丫起来,对着老师这排的第5个同学举一下手等等。通过游戏让学生巩固几个和第几的含义,同时让学生感受爱到数学就在身边。五、全课小结:通过这节课的学心,你有什么收获?总之,这节课我让学生动口、动脑、动手,在精心设计的数学活动中学习数学。
(二)师生互动,认识长方形、正方形、三角形和圆。1、学生拿出准备好的学具(长方形、正方形、等)亲自动手实践,摸一摸、看一看,并在纸上描画这些物体的面,比一比哪个小组的同学画得最好。2、分组讨论,教师巡视3、全班交流,展示作品,根据学生的交流,师生共同得出结论,长方体画出的是长方形,正方体画出的是正方形,三角锥画出的是三角形,圆柱画出的是圆。4、联系生活说一说,清学生说一说生活中见到哪些物体的面是长方形、正方形、三角形和圆。(三)巩固练习用准备好的学具(若干个)拼出自己喜欢的图案,看哪个小组在规定的时间内拼得图案最多最美。1、小组活动。2、各个小组展示自己的作品。3、小组评价,选出优胜品。师选出几个有代表性的作品,让学生分析它是由什么图形组成。
教材分析:本课内容是人教版一年级下册第六单元的第二课时“两位数加一位数和整十数”中的内容,包括两位数加一位数(不进位)、两位数加整十数;两位数加一位数(进位)。有两个例题,共用3节课完成。本节课是第一节,主要让学生理解算理,掌握算法。教材把加一位数与整十数对比集中编排,其目的是让学生加深对相同单位的数才能直接加减的算理认识,为后面学习两位数加减两位数打基础。教材的设计遵循了从具体到抽象的原则。先让学生在计算问题的情境中,动手操作、动脑想、讨论交流探讨不同的计算方法,再让学生运用获得的方法进行口算,体现了知识的形成过程,有利于培养学生抽象思维能力。练习设计注意专项与综合训练相结合,注意变换形式,突出正确率。这些都是我们教学中值得借鉴的。
1、找一找生活中的物体表面上的角,教师给出一定的描述语句『如:红领巾是由2个(锐角)和1个(钝角)组成的。课后,我校语文老师告诉我这句话是错误的,应该该成“红领巾的表面有2个锐角和1个钝角”。作为数学教师在课堂语言上更要严格要求自己,把握数学的严谨性,以免误人子弟。』,让学生学会用简洁的语言表达数学知识,逐渐培养学生的语言表达能力。把学生的思维从课堂带到了生活中,使学生感受到生活中的数学无处不在。『学生朱洋成在教室墙壁上找到一个角,但是用眼睛判断不出是锐角还是钝角,一时楞在那里不知所措。于是我引导他判断角的大小的方法,他说出来后,将教学用的三角板交给他,让他自己动手去寻找答案。』我认为当学生遇到困难,不能说出很多生活中各类角时,教师不立即给予回答,而让学生思考、说说解决的办法,使其懂得要走进生活去观察、去发现、去解决。这样的练习设计,让学生学有困难,学有疑问,学有思考,培养学生学习数学的兴趣。
1.平行四边形和梯形都是四边形。师:要想研究它们,先来观察一下,这两种图形有什么共同的特点?学生说明,教师板书:四边形(于板贴平行四边形后),四边形(于板贴梯形后)。2.平行四边形和梯形都有对边平行。师:还有什么共同点?学生指黑板图形说明平行四边形和梯形中平行的对边。师:这是我们通过观察出来的,真的是这样吗?师:纸上(见上图)就有一个平行四边形和一个梯形.验证一下它们的对边平行吗?拿出你的工具开始吧!(学生操作,指生实物投影就图说明。)师:通过验证,说明了什么呢?有同样的发现吗?3.形成概念。(1)平行四边形。师:刚才我们验证了一个平行四边形和一个梯形,那么其它的平行四边形或梯形是不是也这样呢?这有3个平行四边形。课件呈现:3个平行四边形师:第一个我们刚才验证过了,用电脑再来验证其他两个。
让学生通过观察和比较,明确连接两点的线段的长度叫做这两点间的距离,两点间的所有连线中线段的长度最短,进一步提升了学生的认识。二、认识角1、认识角的特征。谈话:通过一点,可以画无数条直线。那么通过一点,可以画多少条射线呢?(无数条)操作:请你从一点起,在练习纸上画出两条射线?提问:从一点起画两条射线,组成的图形叫什么?(板书:角)谈话:想一想,刚才我们是怎样画出角的?什么样的图形是角?(从一点引出两条射线所组成的图形是角)请一个学生上黑板画角,其余学生再画一个与前面不同的角,并和同学说说自己画的步骤。归纳:由一点引出的两条射线所组成的图形就是角。2.认识角的符号和各部分的名称。谈话:我们在二年级已经初步认识了角,通过今天的学习,我们将进一步加深对角的认识。请同学们打开课本第17页,自学例2,并和小组里的同学说一说你又了解了哪些有关角的知识。
3 比一比,谁算得快。38+76+24 (88+45)+124 、拓展560+(140+70)=(□ + □ )+ □ (64+□)+27=64+(□+27)71+68+ □ 你认为 □ 里填什么数会使你的计算简便?怎样简便计算?5、游戏:找朋友。(1) 哪两个同学手上的树叶的和是100?(2) 同桌一个同学说出一个数,另一个同学马上说出一个与它的和是整百、整千的数。【设计意图 :几个层次的练习,为学生提供了具有价值的学习内容,开放学生的思维空间,提高思维含量,学生在观察辨析中比较,在思考对比中升华,促进学生灵活地理解和掌握知识。】(五)、全课总结,引申知识今天这节课我们学习了什么知识?你是怎样获得这些知识的?那么在减法、乘法、除法中,有没有这样的规律呢?课后大家可以继续研究。【及时总结、巩固所学知识,重视学法总结。使学生在自己的整理总结中再次巩固了本节课的重难点。同时为学生以后的学习作好了铺垫】
3. 实验(课件演示)每个人每天要喝1400毫升水,也就是1.4升,让同学们猜出猜看能有几杯水,通过实验告诉学生每天至少要喝多少杯水。(课件演示)阅读材料,对学生进行节约用水的思想教育。4. 教师:我们知道了容积和容积单位,也知道了它们与体积单位的关系,现在让我们试一试怎样计算一个容器的容积.出示例5、一种小汽车上的油箱,里面长5dm,宽4dm,高2dm。这个油箱可以装汽油多少升?请一位同学读题.教师:这道题告诉了我们油箱里面的长、宽、高,我们能不能计算出它的容积?(可以.)但是,我们能不能直接算出它的容积是多少升?(不能.)那么应该怎样做?(先算出体积,再把算出的体积单位的名数改写成容积单位的名数.)教师让学生独立做题,教师行间巡视,做完后一步一步地指名让学生说一说是怎么做的,集体订正。
活动三:认识正方体的特征,总结长方体、正方体的关系(1)学生用类比法学习正方体的特征,并揭示出长方体和正方体的内在联系,得出:正方体是特殊的长方体。(2)说说生活中哪些物体是长方体、正方体? 开放的学习方式,以学生的自主学习为中心,让学生通过自身的发展尝试总结,验证,实现知识的“再创造”。比较是认识事物的主要方法之一,特别在几何体教学中,运用比较方法,加强形体间的联系和区别,提高识别能力。同时渗透事物普遍联系和发展变化的辩证唯物主义观。联系生活,体现数学来源于生活,又应用于生活的特点。活动四:学以致用智慧屋,包含判断题、计算题等多种题型的练习,培养学生展开多向思维,是学生能够从不同角度解决问题的基础。这样的练习题,侧重于知识点的落实,巩固新知。
正方体的体积=棱长×棱长×棱长用字母a表示棱长,V=a×a×a.也可以写成a3读作a的立方.表示3个a相乘.不要误认为a与3相乘。写a3时3写在a的右上角要写小些.所以正方体的体积公式一般写成: V=a3(五)、巩固练习、运用公式练习是数学中教学巩固新知、形成技能、发展思维、提高学生分析问题、解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式.我设计了多层次的练习。1、通过让学生完成看图求体积,这样有助于学生理解长方体正方体的体积与它的长宽高的关系,记住长方体的体积计算公式.2、我对安排了四个判断题,以加深学生对a的立方的理解和运用。3,解决实际问题,我安排了两道题目的是让学生所学新知识解决生活中的一些实际问题。
2)、配乐朗诵,整体感知。要进一步了解国歌就要学习国歌的歌词,因此我以管弦乐《中国人民共和国国歌》为背景音乐有节奏地带领学生有感情地朗读歌词,让学生小组讨论探讨国歌表达的内容,加深学生对国歌的了解,让学生明白国歌的重要意义,加深学生的情感体验。3)、听赏齐唱歌曲《中华人民共和国国歌》。聆听是一切音乐实践活动赖以进行的基础,因此我让学生听赏齐唱歌曲《中华人民共和国国歌》,提出聆听要求:歌曲可以分为几部分?每部分可以划分为几个乐句?说一说为什么要这样划分。分组讨论,再小组汇报。通过这部分的聆听学习,小组讨论,发挥了学生的团结合作能力和学习的主动性,把歌曲划分为两部分,第一部分是引子,第二部分由四个乐句组成。
高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一. 他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献. 问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,"… " 前100项的和问题.等差数列中,下标和相等的两项和相等.设 an=n,则 a1=1,a2=2,a3=3,…如果数列{an} 是等差数列,p,q,s,t∈N*,且 p+q=s+t,则 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51问题2: 你能用上述方法计算1+2+3+… +101吗?问题3: 你能计算1+2+3+… +n吗?需要对项数的奇偶进行分类讨论.当n为偶数时, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2当n为奇数数时, n-1为偶数
新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.
二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
23.新中国成立以来,农村生产关系经历了四次调整,请举出1950年和1978年进行调整的内容,(2分)简析二者对城市发展的影响,(2分)用一句话总结你对我国调整农村生产关系的认识。(1分)
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.2节《对数函数的图像和性质》 是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。在类比推理的过程中,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养和发展学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2、经过探究对数函数的图像和性质,对数函数与指数函数图像之间的联系,对数函数内部的的联系。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。
新知讲授(一)——古典概型 对随机事件发生可能性大小的度量(数值)称为事件的概率。我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型。即具有以下两个特征:1、有限性:样本空间的样本点只有有限个;2、等可能性:每个样本点发生的可能性相等。思考一:下面的随机试验是不是古典概型?(1)一个班级中有18名男生、22名女生。采用抽签的方式,从中随机选择一名学生,事件A=“抽到男生”(2)抛掷一枚质地均匀的硬币3次,事件B=“恰好一次正面朝上”(1)班级中共有40名学生,从中选择一名学生,即样本点是有限个;因为是随机选取的,所以选到每个学生的可能性都相等,因此这是一个古典概型。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。