材料二 20世纪80年代初,大陆的统一观已经有了创新性的发展,不完全要求绝对的“政治上的服从”和制度上的一致,首创了一个国家中允许存在不同社会制度的理论。这一理论在香港和澳门获得了成功的实践。——据许士铃《国家统一是中华民族历史形成的国家观》⑵材料二中,大陆首创的“一个国家中允许存在不同社会制度的理论”是指什么(2分)分析这一理论提出的依据(2分)。 材料三 1861年2月4日,美国南部诸州退出联邦,成立南部同盟政权,定名为“美利坚诸州同盟”。3月1日,又通过了永久宪法。——据李龙、魏腊云《<中国反分裂国家法>与美国<反脱离联邦法>的比较研究》(3)材料三反映了什么历史现象(2分)?对此,美国联邦政府采取了哪些应对措施(3分)
一、说教学目标【知识与技能】:1、经历在实际问题中收集和处理数据、分析问题、获得信息的过程,探索并掌握100以内数的连加的计算方法,体验算法多样化。2、结合具体情境估算,并说明估算的过程。【数学思考】:让学生学会独立思考,体会数学的基本思想和思维方式。【问题解决】:初步学会从数学的角度发现问题和提出问题,综合运用数学知识和其他知识解决简单的数学问题,发展应用意识和实践能力。【情感态度价值观】:养成倾听的好习惯二、说教学重难点【教学重点】:100以内数连加的计算方法【教学难点】:结合具体情境估算,并说明估算的过程三、 说教学方法创设情境法、引导法、自主学习法四、说教具多媒体课件
一 说教材运算定律和简便计算的单元复习是人教版第八册第三单元内容,属于“数与代数”领域。本节内容是在学生学习了运算定律(加法交换律、加法结合律、乘法交换律、乘法结合律和乘法分配律)以及基本的简便计算方法(连减、连除)基础上进行的整理复习课。二、说教学目标及重难点1、通过复习、梳理,学生能熟练掌握加法、乘法等运算定律,能运用运算定律进行简便计算。2、培养学生根据实际情况,选择算法的能力,能灵活地解决现实生活中的简单实际问题。教学重点:理解并熟练掌握运算定律,正确进行简便计算。教学难点:根据实际,灵活计算。三、说教法学法根据教学目标及重难点,采用小组合作、自主探究、动手操作的学习方式。四、说教学过程
(4)验算师:小数加减计算很轻易出错,你有什么方法检验计算的结果?(假如有困难,教师再提示一下)(三)巩固应用、内化提高 刚才的学生刚刚体会到了成功的喜悦,在此基础上,我安排了三个层次的练习。1. 基本练习,出几道直接写得数的一位小数加减法的题,让学生掌握本课的基础知识。2. 综合练习,是课后做一做1,巩固新知识,发展学生思维的机智性与灵活性。3. 提高练习,课后做一做2这是小数加减法的两步应用题,这样既培养了学生运用知识的能力,有培养了学生的创新能力。【设计意图】这样的练习的设计有密度,有坡度,形式多样,而且具有层次性。不仅巩固了学生的计算能力,而且还培养了学生的应用能力。在这个环节中,还让学生开展了自我评价、生生互评等。大大提高了学生学习的积极性。(四)回顾整理,反思提升通过今天的学习,你都有哪些收获?
1.揭示课题那么,这个运算定律是否对分数加法也适用呢?现在我们就来研究这个问题。板书课题:整数加法运算定律推广到分数加法。2.研究运算定律对分数加法的适用性出示式题:提问:上面每组算式的左右两边有什么关系?得数是否相等?先指名学生练习,算出得数后,再引导学生观察。提问:这两组试题有何共同之处?组织学生开展小组讨论,共同概括总结出他们的共同点,得出规律性的认识,从而使学生体会到整数加法运算定律,对分数加法同样适用。通过讨论明确:加法的交换律、结合律中的数,既包括了整数,又包括了小数和分数。【设计意图】通过具体的实践活动,直观感知了加法运算定律同样也适用于分数加法。这种通过自己实践得来的东西,学生理解得更透,掌握得更牢。
一、肯定成绩,正视问题,充分认识开展思想作风纪律整顿的重要性和必要性近年来,在市委、市政府正确领导下,我市政法机关全体干警紧紧围绕市委中心工作,积极投身XX建设,积极预防和有效化解了一大批难点热点问题,在打击各种犯罪、维护治安稳定中打出了声威,震慑了犯罪,维护了安宁,换来了全市经济持续发展、社会和谐稳定、人民安居乐业的良好局面。特别是去年,市委在全市政法系统开展的“发扬传统、坚定信念、执法为民”主题教育实践活动,对加强队伍建设起到了积极地推动作用,队伍的整体素质不断提高,广大干警的思想、作风、纪律明显转变,政法队伍形象显著提升,涌现出了省市乃至全国先进典型,市法院荣获“全省优秀法院”荣誉称号,荣立集体三等功,涌现出了“全国办案标兵”、
说教学难点:图形的放大与缩小的原理是“大小改变,形状不变“。针对小学生的年龄和认知特点,教材中“图形的放大与缩小”从对应边的比相等来进行安排,而对应角的不变也是形状不变必备的条件,是学生体会图形的相似所必需的。学生在学习的过程中很有可能会质疑到这一问题。(为什么直角三角形只需要同时把两条直角边放大与缩小?)所以我把“学生在观察、比较、思考和交流等活动中,感受图形放大、缩小,初步体会图形的相似。(对应边的比相等,对应角不变)”做为本节课的难点。说教法、学法:通过直观演示,情景激趣,结合生活让学生形成感性认识;引导学生经过观察、猜想、分析、操作、质疑、小组交流、合作学习、验证等过程形成理性认识。教学过程:(略)
尊敬的各位老师,亲爱的同学和家长们:时光浅浅,冬日漫漫,附中师生,好久不见,你们还好吗?这段时间大家辛苦了!反反复复的疫情,致使居家网课成了学习的常态,它对你的学习和生活有影响吗?说没有,绝对是假的。离开了学习的专供场所——校园,离开了窗明几净的教室,离开了朝夕陪伴的老师,离开了团结友好又卷的厉害的同伴,在家学习,说实在的,缺少了一种氛围。人们常把一个陌生的温馨的环境比喻成家,家,就是一个港湾,是一个身体和灵魂的栖息地,可是疫情硬是让我们把家变成了学校,把客厅,卧室变成了教室。没有了教室课堂的约束,没有了老师目光的紧盯和交流,你的坐姿是否端正?一节课你是否一直全神贯注?有没有边听边吃边喝的时候?有没有起床后重返被窝的现象?和同学聊过天没?作业每次都实实在在独立完成吗?一天下来除了利用手机电脑学习,刷过抖音没?听过歌曲没?玩过游戏没?但愿这些都是我们无端的猜想和假设,是我们在杞人忧天,老师们很不放心啊!一直担忧线上学习的效率和效果。
新时代青年应该立鸿鹄之志,展骐骥之跃,青年当系好人生第一粒扣。红日初升,其道大光;河出伏流,一泻汪洋。青春只有一次,谁也不应做青春的看客。中共一大召开时的13名代表平均只有28岁,而这支年轻的队伍却在风雨中迅速成长为中国人民和中华民族的主心骨。黎巴嫩的诗人纪伯伦说过,不要因为走的太远,而忘记了当初为什么出发。青年人更要扣“正”人生的第一粒扣,筑牢信仰之基,补足精神之钙,把稳思想之舵,走好人生的“每一步”。
一、说教材(一)说教学内容我说课的内容是北师大版义务教育课程第八册第四单元“观察物体”一节,是一节新授课。(二)教材简析观察物体是在学生学习并掌握了“上下、前后、左右”位置关系的基础上安排的。通过这部分内容的教学,不但可以使学生能通过由低到高来观察物体的活动,从而体会到不同的位置看到的情景不一样,而且能通过由远到近看景物,能体会到看到的范围越来越小。(三)说教材重点和难点。教学重点:想象、判断观察到画面发生的相应变化,发展空间观念。教学难点:想象、判断观察到画面发生的相应变化,发展空间观念。二、说教学目标依照《新课程标准》的要求,结合教材和学生的特点,从知识、能力、情感态度三方面制定以下教学目标:1、通过引导学生参与各种形式的数学活动,使他们体验从不同的角度观察同一物体所看到的图形可能并不完全相同,领悟观察物体的方法,培养和发展学生的空间观念。2、培养学生运用所学知识解决实际问题的能力、与人交流的能力以及观察能力。
依照《新课程标准》的要求,结合教材和学生的特点,从知识与技能、过程与方法、情感态度与价值观三方面制定以下教学目标:1、经历搭立体图形的操作过程,体会必须根据立体图形的正面、上面和侧面(左面或右面)的形状特征,才能确定所搭的立体图形。结合搭立体图形的活动,进一步体验搭立体图形某一面(如正面)的形状,所搭的立体图形是不唯一的。2、在搭立体图形和观察立体图形的活动中,逐步发展空间观念以及观察和操作能力。3、让学生体验数学和生活的密切联系,培养同学之间合作的习惯。。三、说教法学法根据四年级学生心理、认知规律等特点,本节课准备主要采用观察法和动手法进行教学。注重从学生已有的经验出发,让学生在问题情境中主动地探究解决问题的方法,真正成为课堂的主人。
1、说教材:本节课是北师大版小学数学四年级下册第94-95页。猜数游戏是在学生已经学习了用字母表示数、方程、等式的性质等知识的基础上进行学习的。本节课主要学会用等式的性质解“ax±b=c”这样的方程,并能用方程解决简单的实际问题。教材通过笑笑和淘气猜数游戏,利用等量关系列出方程,重点是利用等式的性质解方程,能口头检验,形成检验的意识。本节课我通过游戏激发学生的兴趣,使学生体会方程的作用,并产生学习方程解法的愿望,为以后学习解方程、用方程思想解决问题打下重要基础。2、说教学目标:通过猜数游戏的这个情景,让学生会解形如“ax±b=c”的方程,并会简单应用,让学生在此过程中,体验解方程的思路,并掌握方法。在情感、态度、价值观方面,通过游戏,训练学生的数学思维能力,养成善于思考的习惯。3、说重、难点:本节课的重点是会解形如“ax±b=c”的方程,并会简单应用;难点是利用等式的性质解方程
《包装》是北师大版四年级下册第三单元第四课时的内容。本课主要让学生探索小数乘小数的竖式计算方法,是在学生掌握小数点位置的移动引起小数大小变化的规律以及积的小数位数与两个乘数的小数位数之间关系的基础上教学的。小数乘法的竖式计算是本单元的重点,是学生正确进行小数乘法计算的关键。课本首先安排了三个问题:第一个问题是结合解决实际问题的过程,会选择适当方法估计运算结果,发展数感,并通过交流进一步理解小数乘法与整数乘法之间相互转化的条件;第二个问题也是结合解决实际问题的过程,掌握小数乘法转化为整数乘法进行运算的一般步骤,从而归纳总结小数乘法的竖式计算方法;第三个问题是经历独立计算和交流小数乘法的过程,体验算法的多样化,发展运算能力。其次安排了6道练习题,目的是为了进一步发展数感,巩固小数乘法的竖式计算方法,体会小数乘法的竖式计算在生活中的应用。
三、说教学重点、难点重点是小数乘法的竖式计算方法和积与乘数的大小关系。难点是小数乘法中乘数末位有0的计算。四、说学情在进行本节内容学习之前,学生已经学习了整数乘法的运算规律,小数的意义及其加减法,还有小数乘法的计算规律。本节内容重点是学会把小数乘法的运算方法应用到解决实际问题中去。根据四年级学生的认知特点和课堂注意力时间有限的特点,在教学中一定要提高课堂效率五、说教法、学法在本课教学中,我采取的教学方法是:1.通过复习,回顾计算规律,并把它应用到竖式中去。2.情境展示,把数学问题直接放在实际问题中来学习并解决。3.解决问题时采用自主探索、独立思考和小组合作交流的学习方式。通过这些教学法激发学生学习的积极性和主动性,引导学生把学到的规律应用到现实生活中来解决实际问题。六、说教学过程(一)举例说明积的小数位数与乘数小数位数的关系。通过比眼力,做一做,复习前一节课所学内容,为本节课打下基础。
3、变换角度,深入思考第三幅情境图隐含着多样的等量关系,也正是引发学生数学思考的最佳情境。根据学生认识的深入程度,可适当让学生体会到等式的“值等”和“意等”,并放手让学生探究,根据不同的认识找到不同的等量关系,列出等量关系不同的同解方程。在教学中,先引导孩子发现情境中的基本相等关系:2瓶水的水量+一杯水的水量=一壶水的水量,并且列出等式2z+200=2000,在此基础上,再引导孩子发现其他的等量关系。在这一过程中,充分激发孩子探求知识的欲望,调动孩子思考的主动性和灵活性,从而找到多样化的等量关系,并进一步提高孩子解决数学问题的能力。4、建立概念,判断巩固在前面教学的基础上总结、抽象出方程的含义。通过三道例题的简洁数学式子表达,让小组合作寻找他们的共同特点,从而建立方程的概念。“含有未知数”与“等式”是方程概念的两点最重要的内涵。并通过“练一练”让学生直接找出方程。
所属单位机关部门D组织ZT教育可以适当错后启动,拉开时间梯次,但也不能与上级单位间隔时间过长,最晚5月5日前要全面启动。需要强调的是,不管什么时间启动,具体到每个单位、部门,开展ZT教育的时间都不能少于5个月。无论采取哪种方式启动,都要讲清这次ZT教育的重大意义、目标要求、工作安排等。总公司机关各部门、所属各单位、各化工公司要将启动方案报巡回指导组审阅把关,巡回指导组还要现场参加指导各部门、各单位的启动工作。三、高水平进行ZT教育督促指导。强有力的督促指导是搞好ZT教育的重要保证,要把严督实导贯穿指导开展ZT教育全过程。按照D中央要求,总公司所属各单位不再派出指导组。这对总公司巡回指导组来说,担子更重了,既要直接指导所属各单位和化工公司本级D委,又要延伸指导所属单位机关部门、直属单位D组织。
无论采取哪种方式启动,都要讲清这次ZT教育的重大意义、目标要求、工作安排等。总公司机关各部门、所属各单位、各化工公司要将启动方案报巡回指导组审阅把关,巡回指导组还要现场参加指导各部门、各单位的启动工作。三、高水平进行ZT教育督促指导。强有力的督促指导是搞好ZT教育的重要保证,要把严督实导贯穿指导开展ZT教育全过程。按照D中央要求,总公司所属各单位不再派出指导组。这对总公司巡回指导组来说,担子更重了,既要直接指导所属各单位和化工公司本级D委,又要延伸指导所属单位机关部门、直属单位D组织。要把准巡回指导工作定位,切实尊重各单位D委主体地位,紧紧依靠他们开展工作,既指出存在问题又要帮助研究对策,真正实现同题共答。
本环节运用了一个阶梯式的问答方法,帮助突破本节课的难点。同时,从具体的实际问题入手,由特殊问题到一般规律的揭示,不仅解决了难点问题,而且从另外一个角度讲也渗透给了学生的数形结合思想,还有利于学生主动探索意识的培养。4、自主评价本环节主要是应用本节课所学的知识以及所积累形成的学习经验和体验解决问题的过程,即课堂巩固训练。在练习题的选择上,由简单到复杂。先是结合图象获取信息进行简单的填空和选择,此题属于A组题型,检验学生的掌握情况;然后进行了一道B组题,关于“一次函数与一元一次方程的关系”知识点的灵活运用,进一步通过练习体会它们的关系。5、自主发展:最后一道则是特殊的区别于之前所学习的分段函数练习,发散学生思维问题的训练。让学生体会分段函数的特点,并掌握求分段函数解析式的方法。
1.小明调查了班级里20位同学本学期计划购买课外书的花费情况,并将结果绘制成了下面的统计图.(1)在这20位同学中,本学期计划购买课外书的花费的众数是多少?(2)计算这20位同学计划购买课外书的平均花费是多少?你是怎么计算的?反思?交流*(3)在上面的问题,如果不知道调查的总人数,你还能求平均数吗?2.某题(满分为5分)的得分情况如右图,计算此题得分的众数、中位数和平均数。活动4:自主反馈1.下图反映了初三(1)班、(2)班的体育成绩。(1)不用计算,根据条形统计图,你能判断哪个班学生的体育成绩好一些吗?(2)你能从图中观察出各班学生体育成绩等级的“众数”吗?(3)如果依次将不及格、及格、中、良好、优秀记为55、65、75、85、95分,分别估算一下,两个班学生体育成绩的平均值大致是多少?算一算,看看你估计的结果怎么样?*(4)初三(1)班学生体育成绩的平均数、中位数和众数有什么关系?你能说说其中的理由吗?
[互动2]师:请大家从上面的解题经历中,总结一下如果已知函数的图象,怎样求函数的表达式?小组讨论之后再发表意见。生:第一步根据图象,确定这个函数是正比例函数或是一次函数;第二步设函数表达式;第三步:根据表达式列等式,若是正比例函数,只要找图象上一个点的坐标就可以了;若是一次函数,则需要找到图象上两个点的坐标,然后把点的坐标分别代入所设的解析式中,组成关于R、b的一个或两个方程。第四步:求出R、b的值第五步:把R、b的值代回到表达式中就可以了。师:分析得太好了。那么,大家说一说,确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?要说明理由。生:确定正比例函数需要一个条件,而确定一次函数需要两个条件。原因是正比例函数的表达式:y=Rx(R≠0)中,只有一个系数R,而一次函数的表达式y=Rx+b(R≠0)中,有两个系数(待定)R和b。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。