雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()解析:∵一次函数和二次函数都经过y轴上的点(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数的图象开口向上,一次函数的图象从左向右上升,故C选项错误;当a<0时,二次函数的图象开口向下,一次函数的图象从左向右下降,故A选项错误,D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 二次函数y=ax2+c的图象与三角形的综合
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.1两角和与差的正弦公式与余弦公式. *创设情境 兴趣导入 问题 两角和的余弦公式内容是什么? 两角和的余弦公式内容是什么? 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 5*动脑思考 探索新知 由同角三角函数关系,知 , 当时,得到 (1.5) 利用诱导公式可以得到 (1.6) 注意 在两角和与差的正切公式中,的取值应使式子的左右两端都有意义. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 启发引导学生发现解决问题的方法 15*巩固知识 典型例题 例7求的值, 分析 可以将75°角看作30°角与45°角的和. 解 . 例8 求下列各式的值 (1);(2). 分析 (1)题可以逆用公式(1.3);(2)题可以利用进行转换. 解(1) ; (2) . 【小提示】 例4(2)中,将1写成,从而使得三角式可以应用公式.要注意应用这种变形方法来解决问题. 引领 讲解 说明 引领 分析 说明 启发 引导 启发 分析 观察 思考 主动 求解 观察 思考 理解 口答 注意 观察 学生 是否 理解 知识 点 学生 自我 发现 归纳 25
教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 8.3 两条直线的位置关系(一) *创设情境 兴趣导入 【知识回顾】 我们知道,平面内两条直线的位置关系有三种:平行、相交、重合.并且知道,两条直线都与第三条直线相交时,“同位角相等”是“这两条直线平行”的充要条件. 【问题】 两条直线平行,它们的斜率之间存在什么联系呢? 介绍 质疑 引导 分析 了解 思考 启发 学生思考*动脑思考 探索新知 【新知识】 当两条直线、的斜率都存在且都不为0时(如图8-11(1)),如果直线平行于直线,那么这两条直线与x轴相交的同位角相等,即直线的倾角相等,故两条直线的斜率相等;反过来,如果直线的斜率相等,那么这两条直线的倾角相等,即两条直线与x轴相交的同位角相等,故两直线平行. 当直线、的斜率都是0时(如图8-11(2)),两条直线都与x轴平行,所以//. 当两条直线、的斜率都不存在时(如图8-11(3)),直线与直线都与x轴垂直,所以直线// 直线. 显然,当直线、的斜率都存在但不相等或一条直线的斜率存在而另一条直线的斜率不存在时,两条直线相交. 由上面的讨论知,当直线、的斜率都存在时,设,,则 两个方程的系数关系两条直线的位置关系相交平行重合 当两条直线的斜率都存在时,就可以利用两条直线的斜率及直线在y轴上的截距,来判断两直线的位置关系. 判断两条直线平行的一般步骤是: (1) 判断两条直线的斜率是否存在,若都不存在,则平行;若只有一个不存在,则相交. (2) 若两条直线的斜率都存在,将它们都化成斜截式方程,若斜率不相等,则相交; (3) 若斜率相等,比较两条直线的纵截距,相等则重合,不相等则平行. 讲解 说明 引领 分析 仔细 分析 讲解 关键 词语 思考 理解 思考 理解 带领 学生 分析 引导 式启 发学 生得 出结 果
活动中合作目标的设计,是以中班孩子年龄特点为依据的。中班孩子的同伴关系已经冲破了亲子、师生等关系的局限,开始向同龄人关系过渡,他们需要去分工、合作,共同完成任务,从而体验合作的愉悦。而幼儿与同伴之间的合作意识却是中班孩子所缺少的,因此在这次活动中,我特意强化了这方面的渗透和引导。如在“两人三足”中两名幼儿的腿绑在一起要同时走动,他们必须得随着身体的逐渐协调一致,才能合作完成任务,体验合作活动的快乐。之后,在不断加快的速度中,在游戏的快乐气氛中,幼儿的互助、合作能力则得到了再一次凸显。“两人三足”是一种民间体育游戏,因此,本次活动开始部分就以民间音乐为背景,以两人合作并配以儿歌的民间游戏“拍手游戏歌”导入,创设了具有民间特色的游戏氛围。“两人三足”是一种控制性较强的合作游戏,有较高平衡、协调的要求,这里选用双人合作游戏“拍手游戏歌”作为前奏,既集中了幼儿的注意力,调动了大脑皮层的兴奋性,使身体各器官快速进入状态,又为基本部分的合作、协调作了专门准备。
活动中合作目标的设计,是以中班孩子年龄特点为依据的。中班孩子的同伴关系已经冲破了亲子、师生等关系的局限,开始向同龄人关系过渡,他们需要去分工、合作,共同完成任务,从而体验合作的愉悦。而幼儿与同伴之间的合作意识却是中班孩子所缺少的,因此在这次活动中,我特意强化了这方面的渗透和引导。如在“两人三足”中两名幼儿的腿绑在一起要同时走动,他们必须得随着身体的逐渐协调一致,才能合作完成任务,体验合作活动的快乐。之后,在不断加快的速度中,在游戏的快乐气氛中,幼儿的互助、合作能力则得到了再一次凸显。 “两人三足”是一种民间体育游戏,因此,本次活动开始部分就以民间音乐为背景,以两人合作并配以儿歌的民间游戏“拍手游戏歌”导入,创设了具有民间特色的游戏氛围。“两人三足”是一种控制性较强的合作游戏,有较高平衡、协调的要求,这里选用双人合作游戏“拍手游戏歌”作为前奏,既集中了幼儿的注意力,调动了大脑皮层的兴奋性,使身体各器官快速进入状态,又为基本部分的合作、协调作了专门准备。
1、树立一种意识:以生为本即以学生为主体。 2、抓住两条主线:抓学生的养成教育,抓班级常规管理。 3、突出三个重点:通过课堂教育熏陶学生良好的品德。通过常规管理促成学生行为习惯养成教育,通过丰富的活动培养学生多种能力。
二、说教学目标 此诗的教学目的是: 1.训练学生行行朗读,字字思考,推敲诗文的意思;启发学生处处想象,揣摩诗的意境,体会诗人的感受。 2.指导朗读,要求在朗读中传达出对诗意的理解,对诗境的感悟。 3.激发学生学习古诗的兴趣。 三、说教学方法 (一)、研究题意,自读自学 1.出示课题。启发学生从课题确定这首诗所写的时间、地点和事情,并推想人物。教师随学生回答,在黑板上用简笔画画出月亮、星星、山峦、寺庙;此时,只简画一座寺庙,没有楼;为了显示高度,在山腰上端横一笔云。同时出示“宿”“寺”卡片,正音、释义。 【画简笔画的目的是引导学生进入诗的意境,教给学生据文想象的方法,为理解诗意奠定基础。为了充分运用课文插图,板画构图力求与插图相仿。】 2.让学生观察板画,再观赏插图,然后要求他们用一个词来表达自己的感觉。教师在学生提出的词中选取“高”,并板书。告诉学生:这首诗是唐朝诗人李白写自己夜宿山寺的亲身感受;全诗四行诗句,都是围绕着“高”来写的。
(一)初读课文,理清脉络。? 1.默读课文,在不认识、容易读错的字词下面做好记号并解决生字障碍。2.边读边思考:课文写了一件什么事情?用自己的话概括出来。3.根据故事内容,理清课文的段落层次。层层递进,帮助学生归纳课文内容:期盼参加演出,排练扮演老虎,饰老虎没成功,寻找失败根源。
1.能学会11个生字,正确读写“晶莹、摇篮、壮观、和蔼、半径、资源”等词语。? 2.能默读课文,结合关键句,说出课文讲了哪几个方面的内容。?3.能理解课文内容,知道课文是怎样一步步得出“我们要精心地保护地球,保护地球的生态环境”这一结论的。? 4.能根据文章内容,联系生活实际,设计保护环境或节约资源的宣传语,增强爱护环境、保护环境的意识。三、说教学重难点1.能默读课文,结合关键句,说出课文讲了哪几个方面的内容;能理解课文内容,知道课文是怎样一步步得出“我们要精心地保护地球,保护地球的生态环境”这一结论。2.能理解课文内容,知道课文是怎样一步步得出“我们要精心地保护地球,保护地球的生态环境”这一结论的;能根据文章内容,联系生活实际,设计保护环境或节约资源的宣传语,增强爱护环境、保护环境的意识。
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
(五)课堂小结四、说班会过程:(一)谈话导入:小朋友们,你知道世界上最珍贵的是什么吗?(生命)当有同学回答说是生命时,师说:“对,就是生命!生命对于我们每个人来说只有一次,所以生命是最可贵的,但是它又是最脆弱的,有时会在那不经意的一瞬间,生命的泉水便会永远消失,所以,本次班队课,老师想和你们一起讨论一下如何爱惜生命、注意安全。”(二)出示一些安全事故的资料 视频和图片资料师过渡:近些年来,发生在学生中的安全事故很多,造成了多少学生死亡,拆散了多少个幸福的家庭,使多少父母痛不欲生!下面请同学们看看这些视频和图片资料(以上设计意图是通过学生视觉和听觉的感官,切身感受生命很脆弱、安全很重要,激发他们提高安全意识)
国旗下的讲话:只要努力一切皆有可能各位老师、同学们:在4月30日的全市中小学春季长跑比赛中,我校男子组和女子组分获第一名和第二名,实现了xx中人多年的梦想,把“不可能”变成了“可能”,为xx中赢得了荣誉和尊严!消息传来,广大师生精神振奋,倍受鼓舞。在此,我代表全校师生,向全体教练员和运动员表示热烈的祝贺!希望大家戒骄戒躁,继续努力,在全市运动会上再创佳绩,为xx中争光!梦想的实现,殊荣的获得,再一次印证了这样一个道理:只要努力,一切皆有可能。作为校长,面对成绩,激动、感动之余,更多的却是思考。思考之一:充分准备是成功的基石。成功的背后,浸透了训练队师生太多的汗水。佟伟、徐士东老师带领20多名运动员,放弃休息时间,克服困难坚持训练。操场泥泞无法训练时,他们改在楼内训练,保证了训练时间、训练强度和训练质量,充分体现了“有条件要上,没有条件创造条件也要上”的精神。事实再一次雄辩证明:成功永远属于有准备的人!
敬爱的老师们,亲爱的同学们:大家上午好。作为新时代的高中生,肩负着祖国复兴的重任。我们要努力学习文化科学知识,在踏入社会之后可以回报祖国、社会和家庭,做一个真正爱国、爱家、敢于承担责任的人。作为21世纪的社会一员,我们必须要用充足的科学文化知识来武装自己,学习不仅是响应时代的号召,也是自身成长发展的需要。周总理曾经为中华之崛起而读书。激励了一代又一代有志青年,他为心中这份信念而学习,发展自己,报效祖国。这不仅仅是一个目标,更是一个人学习必要性的体现。学习不仅是充实自己发展自己,更要胸怀天下,为祖国的建设出力。这是我们学习的必要性。学习需要有一个乐观的、积极向上的、不骄不躁的、不惧困难的良好的心态。有一句话说:“态度决定一切。”有什么样的心态,就有什么样的人生,一个积极向上乐观开朗的人会享受到生活和学习的快乐。反之一个颓废的、不思进取的人,永远不可能有所成就。华罗庚是我国伟大的数学家,他有一次在研究数学题的时候遇到了困难,冥思苦想也没有研究出来。但是他并没有因此而气馁,而是更加努力的去思考,终于在经过许久的思考之后,有了结果。正是由于这种乐观积极,不惧困难的心态。才造就了华罗庚伟大的一生。由此可见,良好心态对于学习的重要性。
演讲稿频道《国旗下的讲话稿:努力学习,只争朝夕》,希望大家喜欢。尊敬的老师,亲爱的同学们:大家早上好!今天我们演讲的主题是努力学习,只争朝夕。年轻是搏击风浪的航船,昂扬潇洒。知识是青春航船的动力,永不衰竭。处在花季中的我们,应该抓紧时间,持之以恒,努力学习,只争朝夕。为理想而努力,为将来而奋斗,先辈们为我们做出了榜样。因为努力,安徒生从一个鞋匠的儿子成为童话王子;因为努力,罗曼?罗兰二十年的心血凝结成《约翰?克里斯多夫》;因为努力,巴尔扎克给人类留下了宝贵的文学遗产《人间喜剧》;还是由于努力,爱迪生才有一千多项伟大的科学发明;爱因斯坦才得以创立震惊世界的相对论;先贤古哲才给我们留下悬梁刺股、凿壁偷光、囊萤映雪的千古美谈。爱因斯坦曾经说过:“在天才和勤奋之间,我毫不迟疑地选择勤奋”;卡莱尔更是激励我们:“天才就是无止境的刻苦勤奋的能力”。长江后浪推前浪,就是我们的雄心;强中自有强中手,这是我们的豪情。让处于学习阶段的我们,像爱迪生、巴尔扎克那样刻苦努力、不懈追求,只有这样,我们才能在学习的道路上将一点一滴的知识积累,才能在人生的旅途中将一方一寸的风景珍藏;只有这样,我们才能实现自己的理想,让生命放射出灿烂耀眼的光芒。
随着自己的不断长大,发现我们身上的责任也越来越大,因为我们是新时代的青年,我们要做好自己的责任,要努力学习。都说我们是垮掉的一代,实际上并不是,我们是抗疫的主力军,冲在最前面为国家人民保驾护航! 共青团建团百年作为新时代的的青年,我们要树立爱国主义精神,国家的前途,民族的命运,人民的幸福,是当代中国青年必须和必将承担的重任。 以便以后为国家和人民献上自己的一份力,在不远的将来我们国家会越来越好,中华民族屹立于世界民族之林,实现中华民族伟大复兴。
本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》第五章的5.5.1 两角和与差的正弦、余弦和正切公式。本节的主要内容是由两角差的余弦公式的推导,运用诱导公式、同角三角函数的基本关系和代数变形,得到其它的和差角公式。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。课程目标 学科素养1.了解两角差的余弦公式的推导过程.2.掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式.3.熟悉两角和与差的正弦、余弦、正切公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.4.通过正切函数图像与性质的探究,培养学生数形结合和类比的思想方法。 a.数学抽象:公式的推导;b.逻辑推理:公式之间的联系;c.数学运算:运用和差角角公式求值;d.直观想象:两角差的余弦公式的推导;e.数学建模:公式的灵活运用;
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。