1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)
三、课后自测:1、如图,A、B、C、D为矩形的四个顶点,AB=16cm,BC= 6cm,动点P、 Q分别从点A、C出发,点P以3cm/s的速度向点B移动,一直到达B为止;点Q以2cm/s的速度向点D移动。经过多长时间P、Q两点之间的距离是10cm?2、如图,在Rt △ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移 动过程中始终保持DE∥BC,DF∥AC,问点D出发几秒后四边形DFCE的面积为20cm2?3、如图所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处的位置 O点的正北方向10海里外的A点有一涉嫌走私船只正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶。在涉嫌船只不改变航向和航速的前提下,问需要几小时才 能追上( 点B为追上时的位置)?
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
一、教学目标1.初步掌握“两边成比例且夹角相等的两个三角形相似”的判定方法.2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性.3.能够运用三角形相似的条件解决简单的问题. 二、重点、难点1. 重点:掌握判定方法,会运用判定方法判定两个三角形相似.2. 难点:(1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似.3. 难点的突破方法判定方法2一定要注意区别“夹角相等” 的条件,如果对应相等的角不是两条边的夹角,这两个三角形不一定相似,课堂练习2就是通过让学生联想、类比全等三角形中SSA条件下三角形的不确定性,来达到加深理解判定方法2的条件的目的的.
∴此方程无解.∴两个正方形的面积之和不可能等于12cm2.方法总结:对于生活中的应用题,首先要全面理解题意,然后根据实际问题的要求,确定用哪些数学知识和方法解决,如本题用方程思想和一元二次方程的根的判定方法来解决.三、板书设计列一元二次方程解应用题的一般步骤可以归结为“审,设,列,解,检,答”六个步骤:(1)审:审题要弄清已知量和未知量,问题中的等量关系;(2)设:设未知数,有直接和间接两种设法,因题而异;(3)列:列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式表示相等关系中的各个量,即可得到方程;(4)解:求出所列方程的解;(5)检:检验方程的解是否正确,是否保证实际问题有意义;(6)答:根据题意,选择合理的答案.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型.通过学生创设解决问题的方案,增强学生的数学应用意识和能力.
(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
二、合作交流活动一:(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
【教学目标】(一)教学知识点能够利用描点法作出函数 的图象,并根据图象认识和理解二次函数 的性质;比较两者的异同.(二)能力训练要求:经历探索二次函数 图象的作法和性质的过程,获得利用图象研究函数性质的经验.(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解. 【重、难点】重点 :会画y=ax2的图象,理解其性质。难点:描点法画y=ax2的图象,体会数与形的相互联系。 【导学流程】 一、自主预习(用时15分钟)1.创设教学情境我们在教学了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x2入手去研究
(3)设点A的坐标为(m,0),则点B的坐标为(12-m,0),点C的坐标为(12-m,-16m2+2m),点D的坐标为(m,-16m2+2m).∴“支撑架”总长AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函数的图象开口向下,∴当m=3米时,“支撑架”的总长有最大值为15米.方法总结:解决本题的关键是根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解.三、板书设计二次函数y=a(x-h)2+k的图象与性质1.二次函数y=a(x-h)2+k的图象与性质2.二次函数y=a(x-h)2+k的图象与y=ax2的图象的关系3.二次函数y=a(x-h)2+k的应用要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和提高学生学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台.充分利用合作交流的形式,能使教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.
雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()解析:∵一次函数和二次函数都经过y轴上的点(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数的图象开口向上,一次函数的图象从左向右上升,故C选项错误;当a<0时,二次函数的图象开口向下,一次函数的图象从左向右下降,故A选项错误,D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 二次函数y=ax2+c的图象与三角形的综合
活动准备 1、幼儿用书人手一册,人手一支笔。 2、2005年的挂历。 星期一~星期日的字卡共7章。 活动过程 一、集体活动 1、通过提问引出星期。 师:小朋友,你知道今天是几月几日吗?星期几?(幼儿回答)那你知道一星期有哪几天? 2、教师出示挂历(本年本月),引导幼儿观察,了解挂历内容。 (1)这是什么?上面有什么? (2)告诉幼儿这是今年的挂历,每一张表示一个月,这是几月份的挂历?这个月有几天呢?教师边指日期边带领幼儿念日期1-30。 (3)认识星期。认读汉字星期一到星期日。 (4)幼儿找一找1日在哪?教师用红笔圈起来。并引导幼儿向上看1日是星期几。 (5)请幼儿圈出今天的日期,再说说是星期几?
以“一竿子插到底”的精神,用“望、闻、问、切”四诊法深入开展调研,真正做到把情况摸清、把问题找准、把对策提实。一是“望”实情。领导干部带头深入一线,突出重点望“问题”、望“不足”。二是“闻”民意。以“四不两直”方式深入一线,综合运用座谈访谈、随机走访、问卷调查、统计分析等多种形式,做好“倾听者”,架起“连心桥”,确保有多样的渠道、足够的样本数据、广泛的覆盖面。三是“问”良策。紧紧围绕主题教育,认真开展“三问”,即问计于民、问需于民、问效于民,广泛汲取群众智慧,认真收集梳理意见建议。四是“切”症结。在深入开展调研过程中,把落脚点放在“事要解决”上,高度重视调研成果的运用和转化,以作风转变带动工作转变。对现场调研发现的突出问题进行精准把脉,及时制定问题整改方案,真正做到发现一处整改一处。坚持突出重点、分类推进,积极破解人民群众“急难愁盼”问题。
四、以问题为导向,学思用贯通破解高质量发展难题公司坚守集团“12349”定位,坚决落实“三个当好”政治责任,切实担负起“走在前、挑大梁、多作贡献”的责任担当,聚焦制约公司转型发展和企业高质量发展的难题,以抓好传统地勘业务、清洁能源开发等基础上做好生态环境治理、土壤污染调查、自然资源调查、土地业务、生态产品价值核算研究等转型业务发展,全力推进公司经济高质量发展。1—9月份,公司新签订合同155份,合同额28511.97万元,较上年同期增加8313.45万元,同比增长51.51%。聚焦公司主业精准发力。一是抢抓政策红利,项目承揽再创新高,仅上半年新签合同就已达到2.15亿元。公司传统主业资源能源勘查紧抓机遇,承揽项目1.73亿元,占比81%,同比增长63%,其中超过500万元的项目有6个;生态环境修复治理业务迈出坚实步伐,合同额同比增长57%,超过500万元的项目2个,公司继20XX年以来,环境修复类项目单笔合同额再次突破千万元;自然资源调查、国土空间规划、生态产品价值实现机制研究等技术服务类业务稳步推进,实现合同额2000余万元。
以“一竿子插到底”的精神,用“望、闻、问、切”四诊法深入开展调研,真正做到把情况摸清、把问题找准、把对策提实。一是“望”实情。领导干部带头深入一线,突出重点望“问题”、望“不足”。二是“闻”民意。以“四不两直”方式深入一线,综合运用座谈访谈、随机走访、问卷调查、统计分析等多种形式,做好“倾听者”,架起“连心桥”,确保有多样的渠道、足够的样本数据、广泛的覆盖面。三是“问”良策。紧紧围绕主题教育,认真开展“三问”,即问计于民、问需于民、问效于民,广泛汲取群众智慧,认真收集梳理意见建议。四是“切”症结。在深入开展调研过程中,把落脚点放在“事要解决”上,高度重视调研成果的运用和转化,以作风转变带动工作转变。对现场调研发现的突出问题进行精准把脉,及时制定问题整改方案,真正做到发现一处整改一处。坚持突出重点、分类推进,积极破解人民群众“急难愁盼”问题。
师我国河流众多,长江流域、黄河流域、珠江流域等正在继续开发,出示“长江流域示意图”,请同学们借鉴今天所学的分析方法,分析长江流域发展的自然地理条件。(学生相互交流、讨论)生略。师长江干流全长6300余千米,发源于青藏高原,流经青、藏、滇、川、渝、鄂、湘、赣、皖、苏、沪,奔入东海。水域辽阔,总面积达180万平方千米,流经我国半壁河山。水量汪洋壮阔,多年平均入海近10000亿立方米。流域内总人口、耕地各约占全国的35%,工农业总产值占全国的40%~50%,历来是中华民族繁衍的沃土。流域经过我国三大阶梯,流经青藏高原、横断山脉、四川盆地、云贵高原、长江中下游平原等地形区。流域内水系发达、众多,以亚热带季风气候为主,气候温暖湿润,降水量丰富,河流水量大,水能资源、森林资源、矿产资源丰富,长江干流自古以来就是我国东西航运的大动脉,沟通内地和沿海的广大地区,干支流通航里程约占全国内河航道总里程的2/3,形成了一个纵横广阔的水运网,被誉为“黄金水道”。
材料二:作为一名人民法官,要对宪法法律始终保持敬畏之心,带头在宪法法律范国内活动,严格依照法定权限、规则、程序履行职责,做到心中高悬法纪明镜、手中紧握法纪戒尺,知晓为官做事尺度。——广州市增城区人民法院院长蒋伟材料三:几年前,我进驻旭日村普法。当时,村里乱象频现:基层选举被宗族势力渗透,拉票贿速、使用暴力解决纠纷时有发生。我便从宣讲宪法开始……经过努力,情况得到了根本性好转,现在村里的大小事务,都能在法治的轨道上运行。——广东卓凡律师事务所律师徐向辉(1)用材料一的观点解释十三届全国人大一次会议议程安排。(3分)
材料二 中国古代戏曲起源于祈获丰收和狩猎胜利的原始宗教歌舞。明清是中国古代戏曲的繁荣时期,这时的戏曲多为反映忠孝节义的美德故事,扎根人民生活,并形成了多样的剧种和流派。古希腊戏剧起源于群众性的节日歌舞和祭祀活动,有悲剧和喜剧两种形式。悲剧主要取材于神话传说和英雄史诗,寄寓了剧作家的政治主张;喜剧取村于日常生活,多为政治和社会讽刺剧。观看戏剧是古希腊公民政治生活的重要内容。(1)据上述材料,比较中国古代戏曲与古希腊戏剧的相同之处。(3分)(2)请举出你所知道的我国戏曲剧种一例。 你能为戏曲文化的传承做一件什么有意义的事情? (2分)
阅读下列材料,回答问题:材料一 鸦片战争前,中国的交通工具主要是轿子、马车和帆船等。鸦片战争后,轮船、火车等新式交通工具逐渐传入。材料二 1865年,英商在北京铺设了半公里的窄轨铁路,并试行小火车。这一举动引起京城市民的惊诧和猜疑,视其为怪物。窄轨铁路很快被清政府责令拆除。甲午战争后,清政府修筑了芦汉、沪宁、津浦铁路,形成近代中国第一个筑路高潮。到1911年,全国铁路总长9292千米。(1)材料一中交通工具的动力在鸦片战争前后发生了什么变化? (2分)(2)据材料二,对于火车的引入,近代中国人的态度发生了怎样的转变?结合所学知识,分析这种转变的原因。U分)(3)结合上述材料,谈谈交通工具在中国近代社会发展中的作用。(1分)
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。