在教学上,我采用了摸花片给幼儿猜的形式引导幼儿复习5的组成。在教学信息和感知材料的呈现上,我选用了教具模型演示法,让幼儿明确操作的要求和进行操作的方法。在思维活动的组织上,我还通过讲解、比较的方法,将幼儿解决问题的种种策略展示出来,引导幼儿观察分析,找出哪一种是最好的。坚持使教法有利于突出教材重点,突破难点,符合幼儿认识规律和年龄特征。根据教学内容和采取的教学方法及手段,我教给幼儿一些学习的方法。操作法是幼儿学习数学的基本方法。幼儿通过操作进行学习,我对幼儿的操作给予必要的指导,让幼儿去探索、发现,这样的学法可以让幼儿获得宝贵的数学经验,在教给幼儿操作法的同时,考虑到本课内容和幼儿的学习情况,对于学习速率快的幼儿,我教给他们讨论交流的方法,学习速率慢的幼儿,我教给他们按顺序有重点地观察的方法,做到授之于渔。
《纲要》中指出科学领域目标“对周围的事物、现象感兴趣,有好奇心和求知欲”,所以,幼儿园的教育应该密切联系幼儿的实际生活而进行,利用身边的事物与现象作为探索的对象。小班幼儿的思维特点是直观感知性强,依靠动作和行动来认知,而且小班幼儿刚入园不久,没有照顾自己的经验,经常将鞋子、袜子拿错。基于此,引导幼儿在原有的生活经验上关注物体的形状、大小、颜色的不同,进行配对,提高他们的观察能力,并且在游戏中自然渗透数学概念,达到《纲要》中“引导幼儿对身边常见事物和现象的特点、变化规律产生兴趣和探究的欲望”。因此,此活动来源于生活,又服务于生活,适合在小班进行开展。
本教材选自《幼儿园教育教学安排意见》小班内容,认识三角形是幼儿几何形体教育的内容之一,幼儿的几何形体教育使幼儿数学教育的重点内容。幼儿学习一些几何形体的简单知识能帮助他们对客观世界中形形色色的物体做出辨别和区分。发展它们的空间知觉能力和初步的空间想象力从而为小学学习几何形体做些准备。小班幼儿在他们充分获得对圆形的感知和确认后,再让他们认识三角形的特征,这对发展幼儿的观察力、比较能力和空间概念具有重要意义。认识三角形是在认识圆形的基础上进行的。这就为比较圆形和三角形奠定了知识基础,有利于幼儿对三角形的感知和掌握。本节课的知识点就是三角形的特征。基于以上对教材的分析,结合幼儿的认知特点,确定以下教学目标:1、教幼儿知道三角形的名称和主要特征,知道三角形由3条边、3个角。2、教幼儿把三角形和生活中常见的实物进行比较,能找出和三角形相似的物体。3、发展幼儿观察力、空间想象力,培养幼儿的动手操作能力。
2008年8月,奥运会将在我国首都北京举行,全国上下都在为奥运会积极准备,小朋友也通过电视、报纸等媒体、以及周围环境等多种途径了解了奥运会,他们对奥运会这个话题很感兴趣,奥运会的吉祥物福娃更是深受小朋友的欢迎。因此我就从孩子的兴趣入手,将数学活动融入孩子的生活,和他们所熟悉的、感兴趣的事物结合起来,设计了《福娃迎奥运》这个活动,把枯燥的数学知识寓于“福娃迎奥运”这个有趣的情景模式中,尽可能地调动孩子的积极性,使他们以愉快的情绪投入活动,获得经验。
数学活动的内容应具有启蒙性、生活性和可探索性。在这个活动中也注意到了这三点。第一、启蒙性。指幼儿对某一内容有所感知和体验,对这一内容获得较丰富的感性经验。在整个活动中,幼儿都处于感知和体验规律的氛围中,对于规律这一内容有了较丰富的认识。第二、生活性。教育生活与幼儿生活实际紧密联系。内容应该是幼儿所熟悉的,也是他们所能理解的。让幼儿感受到数学可以解决人们生活中所遇到的问题。活动选择了搭建动物园——铺一条去动物园的路、为动物园搭围墙这些内容。铺路搭围墙都是幼儿日常生活中了解熟悉的,幼儿能够接受理解。第三、可探索性。即培养幼儿初步的探索、猜想、逻辑推理能力,运用数学方法解决问题的能力。在活动中,幼儿通过观察探索规律,从而运用规律这一数学概念来解决排序的问题(即铺路、为小动物搭围墙)。
解析:(1)根据题设条件,求出等量关系,列一元一次方程即可求解;(2)根据题设中的不等关系列出相应的不等式,通过求解不等式确定最值,求最值时要注意自变量的取值范围.解:设购进A种树苗x棵,则购进B种树苗(17-x)棵,(1)根据题意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:购进A种树苗10棵,B种树苗7棵;(2)由题意得17-x172,所需费用为80x+60(17-x)=20x+1020(元),费用最省需x取最小整数9,此时17-x=17-9=8,此时所需费用为20×9+1020=1200(元).答:购买9棵A种树苗,8棵B种树苗的费用最省,此方案所需费用1200元.三、板书设计一元一次不等式与一次函数关系的实际应用分类讨论思想、数形结合思想本课时结合生活中的实例组织学生进行探索,在探索的过程中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,为后面的学习打下基础.
【教学目标】(一)教学知识点能够利用描点法作出函数 的图象,并根据图象认识和理解二次函数 的性质;比较两者的异同.(二)能力训练要求:经历探索二次函数 图象的作法和性质的过程,获得利用图象研究函数性质的经验.(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解. 【重、难点】重点 :会画y=ax2的图象,理解其性质。难点:描点法画y=ax2的图象,体会数与形的相互联系。 【导学流程】 一、自主预习(用时15分钟)1.创设教学情境我们在教学了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x2入手去研究
变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()解析:∵一次函数和二次函数都经过y轴上的点(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数的图象开口向上,一次函数的图象从左向右上升,故C选项错误;当a<0时,二次函数的图象开口向下,一次函数的图象从左向右下降,故A选项错误,D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 二次函数y=ax2+c的图象与三角形的综合
解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.
解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)
(3)设点A的坐标为(m,0),则点B的坐标为(12-m,0),点C的坐标为(12-m,-16m2+2m),点D的坐标为(m,-16m2+2m).∴“支撑架”总长AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函数的图象开口向下,∴当m=3米时,“支撑架”的总长有最大值为15米.方法总结:解决本题的关键是根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解.三、板书设计二次函数y=a(x-h)2+k的图象与性质1.二次函数y=a(x-h)2+k的图象与性质2.二次函数y=a(x-h)2+k的图象与y=ax2的图象的关系3.二次函数y=a(x-h)2+k的应用要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和提高学生学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台.充分利用合作交流的形式,能使教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.
雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
(2)∵点G是BC的中点,BC=12,∴BG=CG=12BC=6.∵四边形AGCD是平行四边形,DC=10,AG=DC=10,在Rt△ABG中,根据勾股定理得AB=8,∴四边形AGCD的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.
解:四边形ABCD是平行四边形.证明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出△AFD≌△CEB.三、板书设计1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形.2.平行四边形的判定定理(2)一组对边平行且相等的四边形是平行四边形.在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.
四、说教学环节1、复习旧知,揭题导入教师用课件展示毛泽东同志对鲁迅先生的评价语,导入:毛泽东同志一连用了5个“最”字,论定了鲁迅先生在中国现代文化史上的无可替代的地位。1936年10月16日,鲁迅先生因病逝世,临终他说,“赶快收殓,埋掉,拉倒”,“忘记我,管自己的生活”。然而,人们真的那么容易忘掉他吗?事隔十三年后,诗人臧克家在北京参观了鲁迅故居,有感而发,写下了诗歌《有的人》。今天,我们就来学习这首诗歌。看到题目,你们对这首诗歌会有什么问题?理解题目的意思吗?你想从中知道什么呢?(设计意图:引用伟人对鲁迅先生的评价,为学生理解本课的内容和思想定下基调,为下面的学习铺垫。同时让学生对学习内容发出疑问,产生学习的兴趣和动力。)
五、说教学过程 (一)创设情境,揭示课题。 以前面学习的课文《我的伯父鲁迅先生》进行回顾导入,将学生再次带入到鲁迅逝世的场景中,感受人们对他的爱戴。适时补充本诗的写作背景,奠定理解诗歌的感情基调,为学生理解内容做好铺垫。 (二)诵读全诗,整体感知。 给学生充足的时间让学生自主探究,读准字音,把诗句读流畅。 播放朗读音频,学生倾听,练习朗读。指七名学生分节读,教师随机点拨。本首诗学生读通顺是没问题的,但这首诗歌感情色彩强烈,爱憎分明,重点是要读出感情。因此播放音频朗读,一是让学生在倾听中感受诗人的强烈感情,二是仿照练习,读好节奏、声调等,帮助在理解诗歌后更好地感情朗读。 默读并思考:这首诗在内容和写法上你发现了有什么特别之处吗? 引导学生感受诗歌对比和反复的特点,找出具体的对比内容,为后面的理解学习做好准备。
(二)过程与方法:1、通过拼读、练习、组词等方法达到正确读写本课生字、新词的目的;2、通过默读、指导感情朗读等多种形式的朗读训练,质疑、讨论、小组合作学习等形式的学习,达到理解含义深刻的句子,体会文章的思想感情的目的;3、通过教师指导、学生独立思考完成填空练习的方法,学习掌握作者抓住人物语言、动作、神态描写表现人物品质的方法。(三)情感、态度与价值观:通过本课的学习,让学生感受鲁迅先生爱憎分明,为自己想得少,为别人想得多的崇高品质,从而激发学生对鲁迅先生的崇敬之情。(四)教学重点:引导学生学习作者抓住人物语言、动作、神态描写表现人物品质的方法。(五)教学难点:理解4句含义深刻的句子,感受鲁迅先生的崇高品质。
情景教学法。根据课文描述地情景,适时创设情境,引导学生思考、想象,为激发学生对鲁迅高尚人品地崇敬之情,奠定情感基调。 讲解法。在学生探究理解地过程中,教师适当补充背景资料、人物介绍、方法指导等,实现教师地主导作用。 朗读体会法。通过自由读、默读、表演读、感情朗读等,让学生走进人物,体会作者地写作方法,学习文章描写人物地方法。感受文章地思想感情,与作者产生情感共鸣,提高学生地语言感悟能力。 自主探究与交流延伸相结合学习法。在阅读故事地过程中,学生自主探究学习,感知故事内容,通过与同学、老师交流,不断深化对鲁迅地认识,感受鲁迅地高尚品格。
三是:装修不应该打扰邻居的正常休息。如果你是事件中的受害方,你会如何处理这件事情?全班汇报交流,教师相机引导,板书:权利不是绝对的,是有界限的。设计意图:引导学生体会权利行使的界限。环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:布置作业,课外延伸课后,以古老而优美的汉字为主题办一期手抄报。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。六、板书设计为了突出重点,让学生整体上感知本节课的主要内容,我将以思维导图的形式设计板书:在黑板中上方的中间位置是课题《公民的基本权利》,下面是:宪法是公民权利的保障书;法律保障公民基本权利的落实;权利不是绝对的,是有界限的。