2学情分析一年级学生对美术的兴趣很高,对五颜六色的物体特别感兴趣,孩子们课前做的准备很好。3重点难点1.节日里烟花的画法。2.油画棒和水彩颜料相结合的涂色技巧。教学活动活动1【活动】教案第5课五彩的烟花
六、说学法本节课的学法主要是自主探究法、合作交流法。教法和学法是和谐统一的,相互联系,密不可分。教学中要注意发挥学生的主体地位,充分调动学生的各种感官参与学习,诱发其内在的潜力,独立主动的探索,使他们不仅学会,而且会学。学生通过小组合作的方式,自主探究设计出秋游方案,然后每个小组间进行交流,最后推选出最合理可行的方案。学生通过解决生活中的实际问题,从中发现与数学之间的联系。并通过同伴间的交流、讨论等多种方法制定出解决方案,他们从生活中抽象,在实践中体验,最后在讨论中明理,从而得出了最佳的方案。七、说教学过程为了能很好地化解重点、突破难点达到预期的教学目标,我设计了三个教学环节,下面,我就从这三个环节一一进行阐述。(一)创设情境、激发兴趣
1.教学内容《就英法联军远征中国致巴特勒上尉的信》是九年级上册第二单元的一篇课文,从教材内容分析,该文写的是法国著名作家雨果就英法联军远征中国一事,愤怒谴责英法联军的强盗行为,愤怒谴责英法联军毁灭世界奇迹圆明园的罪行,他深切同情中国所遭受的空前劫难,表现出对东方艺术、对亚洲文明、对中华民族的充分尊重。教师要做到能调动学生参与并融入课文的氛围中并为作者的强烈感情所感染。2.教材的地位、作用本课是愤怒谴责非正义战争的罪恶,学习这篇课文就要抓住本文的语言特色,了解雨果的伟大情操。进而关注那段历史,探究被劫掠的根本原因,由此把关注的目光投向艺术、文化、人类及整个世界。本课在学生的审美体验、能力培养上,都起着十分重要的作用。3.教学目标根据新课改理念,结合本文的特点,学生的兴趣,爱好及个性特征,我制定了如下教学目标:
【设计意图】以课文为本,积累知识,领会其写法,提高阅读鉴赏能力是必须的,但文中的知识点很多,时间有限,教师不可能面面俱到。故本板块设计侧重反语的表达效果,教师启发引路为辅,学生合作探究为主。三、总结交流,拓展延伸学完本文,我们思绪万千,有对雨果的钦佩,有对英法联军的痛恨,有对清政府的愤懑,有对战争的厌恶……请以《,我想对你说》为题,说一段话,谈谈你的感想。【设计意图】学以致用,才是教学的最好归宿。引导学生与文本中的人、事对话,既可加深学生对所学知识的理解,又可锻炼学生运用知识、独立思考的能力,还能激发为振兴中华而发愤图强的爱国激情。结束语:一代名园圆明园毁灭了,它毁于英法侵略者之手,也毁于清政府的腐败无能。它的毁灭,既是西方侵略者野蛮摧残人类文化的见证,又是文明古国落后也要挨打的证明,我们中华民族不想欺侮其他民族,但也决不能允许别人欺侮我们。少年强,则中国强!同学们,为了中华民族的伟大复兴,为了圆明园类似的悲剧不再发生,我们要勤奋学习,努力奋斗!
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
二、合作交流活动一:(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
一是进一步落实普法责任制。按照“谁执法谁普法、谁主管谁负责”的普法责任制,将法治宣传教育融入各项**服务工作中,切实履行普法责任。将法治宣传教育与推进各项工作结合起来,做到学用结合、以学促用。二是进一步创新法治宣传方式。按照贴近实际、贴近生活原则,大力开展宣传教育,抓好领导干部带头学法用法,结合工作岗位推动干部职工学法常态化,利用“网***”微信公众号、微信群等载体做好经常性宣传与重要阶段宣传相结合,大力传播法律知识、弘扬法治精神,使相关政策法规宣传融入广大干部群众的日常生活,充分调动和激发广大干部职工和人民群众参与遵法学法守法用法的积极性和主动性。三是进一步掌握政策法规运行情况。实时跟踪中央、省委省政府和市委市政府政策法规制定出台情况,及时按照相关要求对新出台、新修订的政策法规进行全面宣传,为全市**各项工作开展提供系统、全面、可靠的法规政策信息。
二是依法做好劳动争议调解工作。组建职工法律服务团,吸纳13名专业突出、热心公益的律师参与,明确法律援助工作流程及补贴标准,及时为职工提供专业、全面的法律咨询服务,引导职工依法理性表达诉求,今年接待职工来访100人次。联合市中级人民法院开展“法院+工会”劳动争议诉调对接工作,并在*市建立示范点,办理案件3件。三是全面提升工会法治建设水平。职工服务中心是各级工会组织开展法治宣传、服务职工的主要阵地。大力推动一站式职工服务中心建设,在全市范围内打造以市职工服务中心为龙头、乡镇(科局)职工服务中心为骨干,社区(村)职工服务中心为基础、企业职工服务中心为支撑的四级服务职工网络。服务中心设置了“政策咨询”、“法律援助”、“劳动争议调处”、“信访接待”、“心灵聊吧”和“权益维护”等服务窗口,促进工会法治建设进入了规范化、制度化和机制化轨道。
四是严格落实公平竞争审查制度。建立健全公平竞争审查机制,印发了《xx经济和信息化局公平竞争审查制度实施方案(试行)》,进一步明确了各科室审查责任和审查内容,坚决不允许出现影响企业公平竞争的限制性措施。今年,共审查规范性文件x件,均未出现影响公平竞争的相关措施。加强对妨碍统一市场、不正当竞争等问题整治,全面落实市场准入负面清单制度。五是持续提升监管效能。全面推行监管执法“一目录,五清单”制度,积极配合州交通局开展“双随机一公开”工作,加强机动车违规改装的监管工作。(三)健全体系,全面推进政府治理规范化程序化法治化一是加强规范性文件清理。全面落实规范性文件合法性审查制度,制定单位规范性文件备案审查程序,未经合法性审查或审查不合法的,不予审议印发。及时制定《州经信局关于开展州政府规章、行政规范性文件清理工作方案》,明确了清理范围、清理标准、方法和责任主体,全面清理了20xx年x月x日至2022年xx月xx日以x府发、x府函、x府办发、x府办函、x府规、x府办规等x种字号印发的州政府文件,共清理非涉密文件xx件,经合法性审核、集体审议,建议废止x件、失效xx件、拟修改x件,继续有效xx件。
1、继续开展以创建“安全学校”活动。各校要根验收的标准,明确校长是学校安全工作的第一责任人,层层落实责任,动员全体师生积极参与到“安全”的活动中。 2、进一步加强学校安全知识教育。要坚持安全教育与教育教学活动相结合的原则,重视学校安全文化建设。要充分挖掘文本的安全知识资源,利用学校的各种宣传场所和设备,增强安全意识,使学生掌握必要的自我防范安全常识,提高自防自救自护能力。
二、存在主要的问题一是普法宣传工作做的不够细,群众领会能力普遍不高,法治观念不强,真正知法、用法的群众不多。二是普法宣传力量不足,专业法律业务水平不高,缺乏一支热心法治宣传、懂法律、有一定演讲能力的普法讲师团、宣传员。三是镇、村(社区)两级经济困难,对开展依法治镇工作心有余而力不足,各村、居委会的普法工作发展不平衡,没有专项经费,硬件投入少,标准不高,操作性不强。四是发展不平衡。人员编制少,大部分干部身兼多职,时间和精力有限,公路沿线抓得好,边远村居工作开展较差。五是基础工作较为薄弱。个别村和镇级单位对依法治理工作重视不够,软件资料不太齐全和规范。三、有关工作建议一是加大普法宣传力度,以通俗易懂的方式进行宣传,提高群众领会能力、增强法治观念,让群众能够真正学法、知法、懂法、守法、用法;二是组建一支有演讲能力、法律业务水平高、热心法治宣传的普法讲师团,充实普法宣传力量,使普法宣传有明显的效果;三是加大经费投入,提供更好的硬件设施,让基层工作人员有更多时间、更好的精力投入到普法宣传工作当中。
一、教材分析:1、地位与作用:《频率与概率》选自高等教育出版社出版,李广全、李尚志主编的中等职业教育课程改革国家规划新教材《数学》(基础模块)下册,第十章第二节的内容。本节课的最大特点是与人们的日常生活密切联系。而本节课的内容主要包括概率的定义和用频率估计概率的方法,安排1课时完成。本节课的学习,将为后面学习古典概型和用列举法求等可能性事件的概率打下基础,同时也为学生体会概率和统计之间的联系打下基础,在教材中处于非常重要的位置。2、学情分析:本节课的授课对象是高二(2)班的会计专业的学生,女生偏多。学生数学基础较好。学生思维活跃,善于交流,动手操作能力强,对上节课的必然事件、随机事件、不可能事件知识已经理解并掌握,表现欲强。这些特点为本堂课的有效教学提供了质的保障。
教学目标:1.知道二次函数与一元二次方程的联系,提高综合解决问题的能力.2.会求抛物线与坐标轴交点坐标,会结合函数图象求方程的根.教学重点:二次函数与一元二次方程的联系.预设难点:用二次函数与一元二次方程的关系综合解题.☆ 预习导航 ☆一、链接:1.画一次函数y=2x-3的图象并回答下列问题(1)求直线y=2x-3与x轴的交点坐标; (2)解方程2x-3=0(3)说出直线y=2x-3与x轴交点的横坐标和方程根的关系2.不解方程3x2-2x+4=0,此方程有 个根。二、导读画二次函数y= x2-5x+4的图象1.观察图象,抛物线与x轴的交点坐标是什么?2.求一元二次方程x2-5x+4=0的解。3.抛物线与x轴交点的横坐标与一元二次方程x2-5x+4=0的解有什么关系?(3)一元二次方程ax2+bx+c=0是二次函数y=ax2+bx+c当函数值y=0时的特殊情况.二次函数y=ax2+bx+c的图象与x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?
至此,估计学生基本能够掌握定理,达到预定目标,这时,利用提问形式,师生共同进行小结。五、几点说明1、板书设计:为了使本节课更具理论性、逻辑性,我将板书设计分为三部分,第一部分为圆的轴对称性,第二部分为垂径定理,第三部分为测评反馈区(学生板演区)。2、由于垂径定理在圆一章中的重要性,所以这节课只讲了定理而没有涉及逆定理。3、设计要突出的特色:为了给学生营造一个民主、平等而又富有诗意的课堂,我以新数学课程标准下的基本理念和总体目标为指导思想,在教学过程中始终面向全体学生,依据学生的实际水平,选择适当的教学起点和教学方法,充分让学生参与教学,在合作交流的过程中,获得良好的情感体验。通过“实验--观察--猜想--证明”的思想,让每个学生都有所得,我注意前后知识的链接,进行各学科间的整合,为学生提供了广阔的思考空间,同时让学生利用所学知识解决实际问题,感受理论联系实际的思想方法。
6、问题的检验学生提出的问题和老师拓展的问题在解答过程中,学生能否真正领会,或领会的程度如何?这就需要检验才能了解。检验的方式很多,可以通过交流、调查、反思、随堂检测等方式进行。我主要采用随堂检测的方式,把事先准备好的自测题发给学生,或利用多媒体投影来进行当堂检测。检测题目不宜过多,可随学生的课堂表现而有所增减,同时,把拓展性的问题作为思考题留给学生课外探索。如,这节课我是选择了《同步作业》中的几个具有代表性的问题来完成检验的。安排这一环节的意图:通过把教学内容以问题的形式列出来,用于检验学生对知识点的掌握和教师教学效果的了解,帮助教师及时掌控课堂教学情况,调整教学思路和教学进度。7、我的收获和疑惑课程结束时,让学生谈谈自己的收获以及还有哪些问题没能搞明白。安排这一环节的意图:这一环节可以促使学生对本节课的内容进行主动的、深层次的的回顾与反思,从而加深学生对所学知识的整理、记忆与理解,同时也便于老师对课堂教学效果的及时掌握和调整以后的教学思路。
设计意图这一组习题的设计,让每位学生都参与,通过学生的主动参与,让每一位学生有“用武之地”,深刻体会本节课的重要内容和思想方法,体验学习数学的乐趣,增强学习数学的愿望与信心。4.回顾反思,拓展延伸(教师活动)引导学生进行课堂小结,给出下列提纲,并就学生回答进行点评。(1)通过本节课的学习,你学会了哪些判断直线与圆位置关系的方法?(2)本节课你还有哪些问题?(学生活动)学生发言,互相补充。(教师活动)布置作业(1)书面作业:P70练习8.4.41、2题(2)实践调查:寻找圆与直线的关系在生活中的应用。设计意图通过让学生课本上的作业设置,基于本节课内容和学生的实际,对课后的书面作业分为三个层次,分别安排了基础巩固题、理解题和拓展探究题。使学生完成基本学习任务的同时,在知识拓展时起激学生探究的热情,让每一个不同层次的学生都可以获得成功的喜悦。