(3)移项得-4x=4+8,合并同类项得-4x=12,系数化成1得x=-3;(4)移项得1.3x+0.5x=0.7+6.5,合并同类项得1.8x=7.2,系数化成1得x=4.方法总结:将所有含未知数的项移到方程的左边,常数项移到方程的右边,然后合并同类项,最后将未知数的系数化为1.特别注意移项要变号.探究点三:列一元一次方程解应用题把一批图书分给七年级某班的同学阅读,若每人分3本,则剩余20本,若每人分4本,则缺25本,这个班有多少学生?解析:根据实际书的数量可得相应的等量关系:3×学生数量+20=4×学生数量-25,把相关数值代入即可求解.解:设这个班有x个学生,根据题意得3x+20=4x-25,移项得3x-4x=-25-20,合并同类项得-x=-45,系数化成1得x=45.答:这个班有45人.方法总结:列方程解应用题时,应抓住题目中的“相等”、“谁比谁多多少”等表示数量关系的词语,以便从中找出合适的等量关系列方程.
方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.探究点三:工程问题一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?解析:首先设乙队还需x天才能完成,由题意可得等量关系:甲队干三天的工作量+乙队干(x+3)天的工作量=1,根据等量关系列出方程,求解即可.解:设乙队还需x天才能完成,由题意得:19×3+124(3+x)=1,解得:x=13.答:乙队还需13天才能完成.方法总结:找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作效率×工作时间=工作总量,当题中没有一些必须的量时,为了简便,应设其为1.三、板书设计“希望工程”义演题目特点:未知数一般有两个,等量关系也有两个解题思路:利用其中一个等量关系设未知数,利用另一个等量关系列方程
解:设截取圆钢的长度为xmm.根据题意,得π(902)2x=131×131×81,解方程,得x=686.44π.答:截取圆钢的长度为686.44πmm.方法总结:圆钢由圆柱形变成了长方体,形状发生了变化,但是体积保持不变.“变形之前圆钢的体积=变形之后长方体的体积”就是我们所要寻找的等量关系.探究点三:面积变化问题将一个长、宽、高分别为15cm、12cm和8cm的长方体钢坯锻造成一个底面是边长为12cm的正方形的长方体钢坯.试问:是锻造前的长方体钢坯的表面积大,还是锻造后的长方体钢坯的表面积大?请你计算比较.解析:由锻造前后两长方体钢坯体积相等,可求出锻造后长方体钢坯的高.再计算锻造前后两长方体钢坯的表面积,最后比较大小即可.解析:设锻造后长方体的高为xcm,依题意,得15×12×8=12×12x.解得x=10.锻造前长方体钢坯的表面积为2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),锻造后长方体钢坯的表面积为2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).
活动目的:(1)通过小组讨论活动,让学生理解坐标系的特点,并能应用特点解决问题。(2)培养学生逆向思维的习惯。(3)在小组讨论中培养学生勇于探索,团结协作的精神。第四环节:练习随堂练习 (体现建立直角坐标系的多样性)(补充)某地为了发展城市群,在现有的四个中小城市A,B,C,D附近新建机场E,试建立适当的直角坐标系,并写出各点的坐标。第五环节:小结内容:小结本节课自己的收获和进步,从知识和能力上两个方面总结,老师予于肯定和鼓励。目的:鼓励学生大胆发言,敢于表达自己的观点,同时学生之间可以相互学习,共同提高,老师给予肯定和鼓励,激发学生的学习热情。第六环节:布置作业A类:课本习题5.5。B类:完成A类同时,补充:(1)已知点A到x轴、y轴的距离均为4,求A点坐标;(2)已知x轴上一点A(3,0),B(3,b),且AB=5,求b的值。
因为x3表示手机部数,只能为正整数,所以这种情况不合题意,应舍去.综上所述,商场共有两种进货方案.方案1:购甲型号手机30部,乙型号手机10部;方案2:购甲型号手机20部,丙型号手机20部.(2)方案1获利:120×30+80×10=4400(元);方案2获利:120×20+120×20=4800(元).所以,第二种进货方案获利最多.方法总结:仔细读题,找出相等关系.当用含未知数的式子表示相等关系的两边时,要注意不同型号的手机数量和单价要对应.三、板书设计增收节支问题分析解决列二元一次方程,组解决实际问题)增长率问题利润问题利用图表分析等量关系方案选择通过问题的解决使学生进一步认识数学与现实世界的密切联系,乐于接触生活环境中的数学信息,愿意参与数学话题的研讨,从中懂得数学的价值,逐步形成运用数学的意识;并且通过对问题的解决,培养学生合理优化的经济意识,增强他们的节约和有效合理利用资源的意识.
四.知识梳理谈谈用一元二次方程解决例1实际问题的方法。五、目标检测设计1.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,则每个小长方形的面积为( ).【设计意图】发现几何图形中隐蔽的相等关系.2.镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.【设计意图】考查学生的审题能力及用一元二次方程模型解决简单的图形面积问题.
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
∴此方程无解.∴两个正方形的面积之和不可能等于12cm2.方法总结:对于生活中的应用题,首先要全面理解题意,然后根据实际问题的要求,确定用哪些数学知识和方法解决,如本题用方程思想和一元二次方程的根的判定方法来解决.三、板书设计列一元二次方程解应用题的一般步骤可以归结为“审,设,列,解,检,答”六个步骤:(1)审:审题要弄清已知量和未知量,问题中的等量关系;(2)设:设未知数,有直接和间接两种设法,因题而异;(3)列:列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式表示相等关系中的各个量,即可得到方程;(4)解:求出所列方程的解;(5)检:检验方程的解是否正确,是否保证实际问题有意义;(6)答:根据题意,选择合理的答案.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型.通过学生创设解决问题的方案,增强学生的数学应用意识和能力.
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
(由除数的小数位决定。因为我们只要把除数转化成整数就成了除数是整数的小数除法。如:0.756÷0.18=75.6÷18。)(设计意图:在试做的基础上引导学生初步感受转化时小数点的移位方法,为自主概括法则作铺垫)2、学习例5:买0.75千克油用10.5元。每千克油的价格是多少元?学生列式:10.5÷0.75。①要把除数0.75变成整数,怎样转化?(把除数0.75扩大100倍转化成75。要使商不变,被除数也应扩大100倍。)②被除数10.5扩大100倍是多少?(10.5扩大100倍是1050,小数部分位数不够在末尾被“0”。)3、比较例4与例5有什么不同?(被除数在移动小数点时,位数不够在末尾用“0”补足。)4、练习:课本P21练一练第2题,学生独立完成后,归纳小结。(设计意图:对被除数小数点移位后补“0”的方法,教师可作适当点拨。学生试做后先不急于讲评,让他们对照教材中的两个例题启发学生观察、比较两道例题的不同点与计算时的注意点。引导学生分析、比较,逐步抽象出移位的方法。)
五、说学情小学六年级的学生已具备初步的逻辑思维能力,但仍以形象思维为主,教材在小学中年级的数学教学中,已经逐渐借助推理与知识迁移来完成,并结合教材挖掘、创造条件开始渗透数形结合思想。进入中高年级后,学生逻辑思维能力已有一定发展,为了使学生更直观的理解知识,同时又满足学生逻辑思维能力的发展,因此本节教材在编排上体现了先“数”后“形”的顺序,把形象真正放在“支撑”地位,从而为培养学生的逻辑能力而服务。六、说教法学法为了在教学过程中充分体现学生的主体地位和教师的主导作用,本节采用教师引导和学生自主学习相结合的方法,培养学生积极探索和团结协作的精神,同时采用PPT课件直观形象的演示功能,强化理解,突破重点、难点并调动学生的学习积极性。1.将问题直接呈现在学生面前,引导学生对题目的内容进行理解,在明确了题目的要求之后,教师把时间还给学生,引导学生自主思考问题,通过具体形象教具的支撑帮助学生发展规律。2.利用小组合作学习,在合作交流中通过看一看,议一议,借助直观教具发现理解规律。3.利用微课对差生进行“补学”。在学生探究汇报之后,针对学习有困难的学生利用微课视频直观巩固知识。
教学难点:理解整数除以分数的计算方法;二、说教法和学法为了突出重点,分散难点,让学生积极主动地参与到知识形成的过程中来。教学中采用分步探究,分步实施的原则。把整数除以分数的计算方法分两步进行探究。1.整数除以几分之一的计算方法;2.整数除以几分之几的计算方法;这样做,可以使学生通过自己的努力,小组合作交流,发现整数除以分数的计算方法。数学教学不仅是让学生获得数学的基础知识,还要教给学生学习知识的方法。培养学生的能力,发展学生的智力。教学中,让学生观察,分析,讨论引导学生寻找方法。再通过发现总结运用法则巩固知识内容。通过调动学生的积极性,不仅使学生学会了,而且会学了,会用了。从而也形成了一套良好学习方法,增强能力发展智力。
一、教材及学情分析“数学广角”是新教材在向学生渗透数学思想方面做出的新尝试。本课内容重在向学生渗透简单的排列组合的数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。本课内容是学生在小学阶段初次接触有关排列组合的知识,但是在日常生活中,有很多事情是用排列组合来解决的,如:衣服的搭配、付钱时面值的选择等等。二、学习目标及教学重、难点通过对本教材的深入研究,结合新课程的三维目标理念,我确定了如下的学习目标:1.通过观察、猜测、操作等活动,找出简单事物的排列数与组合数。2.经历探索简单事物排列与组合规律的过程,掌握有序地全面思考问题的方法。三、教法、学法设计根据本课教学内容的特点和学生的思维特点,我采用情境教学法、操作发现法、直观演示法。为使学生能够有效地学习,主动的建构知识。我采用合作交流法、动手操作法、自主探究的学习方法,让学生在一系列活动中感知有顺序的搭配。
第一个板块是“脑筋急转弯”,激发学习兴趣。目的有两个:一是拉近与学生的距离,二是为本节课做铺垫。第二板块是自主探究,优化策略。这一部分内容通过“操作感悟——抽象内化——巩固应用”三个片段,使学生在教师的点拨引导下,沿以下四个步骤:“一张和两张饼的烙法(基础)→三张饼的最佳烙法(难点)→双数饼、单数饼的烙法(提升)→最佳方案、双数饼:两张两张烙;单数饼:两张两张烙+最后3张饼交叉烙(优化)进行探究。1、探索烙3张饼的最少时间是本节课的重点也是难点,优化的数学思想只能是“渗透”而不能“明透”,也就是说只能让学生在潜移默化的过程中理解,而不能仅仅靠传授。因此,本课中蓄势----为探索最佳方法打基础的方法,自认为运用得恰到好处。例如,围绕“烙2张饼最少要花6分,为什么烙1张饼与2张饼所用的时间一样多呢?你们是怎么想的?”这个问题,让学生体会烙2张饼是用足了空间,而烙1张饼浪费了空间和时间,为探索烙3张饼埋下了伏笔。
(五)课前准备: 1、铺垫:让学生和家长一起收集历代有关合理安排的故事。 2、教具准备:圆形卡片、工序卡片、记录表格和多媒体课件等。 学具准备:让学生以小组为单位制作好图形卡片和工序卡片。 二、说教法和学法 在教学方法上,为了使学生能轻松、愉快地理解优化思想,根据学生的认知特点和规律,在本课的设计中,我使用了演示法和实验法,通过课件的情境演示和实物的操作为学生创设情境,让学生独立思考,然后动手操作,互相交流,最后找出最优方案的方式组织教学。 在学法方面,我设计了一系列贴近学生生活实际和年龄特点的教学活动,在这些活动中,着重以引导学生运用自主探究、合作探究两种学习方式交替学习,让他们真正以课堂的身份参与全程。并培养他们收集数据和分析处理数据的能力。
(二)自主探究,学习新知。(1)认识“11”。让学生说说身边的“11”,接着数出11根小棒。根据学生已有的知识和经验,猜想学生能顺利地数出;再接着让学生另外数出11根小棒,动手摆一摆,探讨一下还有没有别的更好的摆法。比较各种摆法的不同点。[在学习新知,突破重难点这一环节,让学生动口说一说,动手摆一摆,用眼观察,用脑思考,使学生通过具体实物比较各种摆法,让学生借助实物感知10根一捆的原因,建立以一代十的表象认知。](2)学习例2中的“15、20”,加深理解组成。让学生数出15根小棒,动手摆一摆,捆一捆。引导学生运用上面发现的容易看出数量的方法,摆一摆,捆一捆,同桌交流,互相猜猜,根据实物说出数量,根据实物说数的组成,再倒过来根据组成说出这个数。如:“15是由1个十和5个一组成,1个十和5个一组成15。”同样,让学生动手摆摆,捆捆,看看,说说,学习“20”。
4、奖品中有题,激发学生在课堂末尾疲劳的思维,再次让学生热情高涨,奖品后的一句话,及时的思想教育,这一步的练习完全脱离实物,重在算理的掌握。 5、小猫钓鱼。□+□=10,3+7=10,由此引入开放题目。□+□=10,如1+9=10,2+8=10等等。 五、你想把今天的学习情况告诉给我们希望小学的小朋友吗? 自我的评价与认可,让学生在最后带着成功,快乐的心情结束本节课。 本节课的预设是好的,课前教师与学生的交流,拉近与学生的心理距离,也为课堂上学生的表现有了心理准备。启发示的提问让学生一步步掌握本课内容,走近学生,尽可能让每一个学生得到关注,得到认可,体现人文精神,老师的热情与课堂学生融为一体。不仅是语言上的交流,更重要的是师生心灵的沟通。尽力体现学生学自已的数学,生活中的数学。但对教材理解的不足,重难点的处理上也许会把握的不够,对学生的可能出现的情况预想不够,会出现课堂纪律混乱等现象,出现非预设现象。
(一)说教材本节课是在学生基本上掌握了亿以内数的读、写方法以及比较两个数的大小和把整万的数改写成用万作单位的数后,用"四舍五入"法求近似数。这部分内容不好总结,但是与过去的旧知识联系紧密。由讲故事引入课题,进而渗透旧知,由复习省略百位、千位后面的尾数求近似数,类推到省略万位后面的尾数求近似数。这样引导,有利于培养学生归纳推理的能力。(二)说教学目标1.能正确的用"四舍五入"法求近似数。2.培养学生比较分析的思维能力,养成良好的学习习惯。(三)说重难点使学生学会如何用“四舍五入”法将非整万的数改写成用“万”做单位的近似数。(四)说教法这部分知识与旧知联系比较紧密,因此,教学过程的设计,采用帮助学生回忆有关的旧知识,引导学生探索出新知识的方法,培养学生的归纳推理能力。