导语在必修第一册中,我们研究了函数的单调性,并利用函数单调性等知识,定性的研究了一次函数、指数函数、对数函数增长速度的差异,知道“对数增长” 是越来越慢的,“指数爆炸” 比“直线上升” 快得多,进一步的能否精确定量的刻画变化速度的快慢呢,下面我们就来研究这个问题。新知探究问题1 高台跳水运动员的速度高台跳水运动中,运动员在运动过程中的重心相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t2+4.8t+11.如何描述用运动员从起跳到入水的过程中运动的快慢程度呢?直觉告诉我们,运动员从起跳到入水的过程中,在上升阶段运动的越来越慢,在下降阶段运动的越来越快,我们可以把整个运动时间段分成许多小段,用运动员在每段时间内的平均速度v ?近似的描述它的运动状态。
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.
对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
中国梦是历史的、现实的,也是未来的,中华民族伟大复兴的中国梦终将在一代代青年的接力奋斗中变为现实。阅读下列材料,回答问题。材料一 五月四日下午一时半,十几个学校的学生齐集天安门,人人手里拿着一面或两面白旗,上面写着“还我青岛”“头可断青岛不可失”……第二天,北京各大专学校总罢课……六月三日,北京学生在街头演讲时被北洋政府逮捕一百七十八人……第三天,上街演讲的学生达到五千多人,社会影响加大。学生的爱国行动得到越来越多各界人士的同情和支持……这是真正伟大的历史转折点。——摘编自金冲及着《二十世纪中国史纲》(第一卷)材料二(七七事变后)20岁的张访朋投考了由广西南宁迁到桂林的黄埔第六分校,成为第十六期期的一名学生……,为了锻炼预备军官们的指挥能力,军校里不时进行沙盘作战演习……教官们讲怎么指挥作战,讲得很生动这是张访朋第一次从军官的角度去思考如何作战。——摘编自《我的抗战》节目组著《我的抗战Ⅱ》
材料一:在朝廷中必须使用汉语,禁用鲜卑语;官员及家属必须穿戴汉族服饰;将鲜卑族的姓氏改为汉族姓氏……,提倡尊老、养老的风气等。材料二:7世纪前期,吐蕃杰出赞普松赞干布统一青藏高原,定都逻些,松赞干布仰慕中原文明,几次向唐求婚。材料三:顺治帝接见达赖五世,并踢予“达赖喇嘛”的封号。康熙帝又册封五世班禅为“班禅额尔德尼”,并规定以后历世达赖和班禅都必经过中央政府册封的制度。(1)材料一所说的是北魏哪一位皇帝的改革?这次改革有什么作用?(2)材料二中松赞干布迎娶了唐朝的哪一位公主?当时的皇帝是谁?(3)结合材料三,1727年,政府设置___________与达赖、班禅共同管理西藏事务。后来,为巩固统一多民族国家,乾隆帝在新疆设置____________管辖整个新疆地区。
16.(10分)报刊是历史的档案,不仅记录了时代的变迁,而且影响了社会发展的进程。阅读下列材料,回答问题。材料一 1898年8月,《万国公报》发表以广学会名义撰写的《速兴新学条例》,提出了多项发展教育的主张。如主张派遣留学,每年由国家从学有所成之士中选100人,资派出洋。又如,主张在每一府所在地和市镇各设学塾、书院,专以西文西学教人。 ——摘编自黄新宪《<万国公报>与中国教育的近代化》材料二 东北自沦陷后,《申报》报道了大量东北义勇军的战斗情况,对他们的战斗成果热情宣扬。1936年底,《申报》对傅作义及其所部在红格尔图和百灵庙战役击溃日伪军的行动进行了连续报道,大大鼓舞了中国军民的士气。随着卢沟桥的枪声响起,《申报》对抗战予以了更多的关注和报道。 ——摘编自盘霄远《抗战全面爆发后<申报>对时局报道态度的研究》
20.阅读材料,回答下列问题:材料一 1929年初,美国似乎日趋繁荣……10月,股票市场价格跌到了最低,世界范围的经济萧条随之而来,而且萧条的强烈程度和延续时间的长久都是空前的。(1)根据材料一并结合所知识,说出资本主义世界发生了什么重大事件?针对这一事件,请举出除美国之外其他国家采取了什么应对方式?材料二 1938年,一个叫张伯伦的老人得意地挥舞着一纸协定,向他的人民宣布“我带来了我们时代的和平”。但事实上……协定加快了世界大战的步伐。(2)根据材料二并结合所学知识,“一纸协定”是哪一次会议的产物?在这次世界大战中,人类首次使用原子弹,请写出研制原子弹的科学理论依据。
材料二 郑和描述船队远航的情景:观夫海洋,洪涛接天,巨浪如山……而我之云帆高张,昼夜星驰,涉波狂澜,若履通衢……——选自郑和《天妃之神灵应记>材料三 新中国的成立,告别了“弱国无外交”的耻辱。中国人民第一次掌握了自己的命运,赢得了中华民族的尊严和国际上的尊重。50多年来,新中国外交走过了一条催人奋进的光彩之路。——选自人教版《教师教学用书》八年级下册材料四 20世纪八九十年代,东西方冷战结束,国际形势趋于缓和,和平与发展成为世界的发展趋势。在发展经济的过程中,各国经济联系日益密切,任何一个国家经济都不可能孤立地发展下去。于是,世界经济日益成为一个整体。——选自人教版《世界历史》九年级下册(1)请写出材料一中汉代丝绸之路的起点?(1分)丝绸之路经过今新疆地区和西亚的两河流域,那么清朝时设置什么机构管辖整个新疆地区?(1分)古代世界历史上两河流域曾出现过哪一文明古国?(1分)
21.根据提示写出相应的历史人物。(4分)(1)改革开放和社会主义现代化建设的总设计师是________________(2)提出“相对论”,打开原子时代大门的科学家是___________________(3)领导俄国人民取得十月革命的胜利,建立了笫一个社会主义国家的是________________ (4)面对1929-1933年经济危机,实施“新政”的美国总统是________________
材料一:魏晋以来,官员大多从各地高门权贵的子弟中选拔.权贵子弟无论优劣,都可以做官.隋炀帝时正式设置进士科,考核参选者对时事的看法,按考试成绩选拔人才.从此,门第不高的读书人,可以凭才学做官.唐朝时科举考试科目以进士、明经最重要,武则天时又推行了殿试和武举,唐玄宗时诗赋成为进士科主要开始内容.宋朝时考试内容重经义,大幅扩大进士录取名额.明清时科举考试只许在四书五经范围内命题,答卷的文体必须分为八个部分,被称为“八股文.”﹣﹣摘编自七年级《中国历史》下册等
材料三:15世纪,追求财富的欧洲人梦想去东方发财,开始探寻通往东方的航路.(1)根据材料一回答;两次出使西域,并为丝绸之路的开辟做出重要贡献的人物是谁?丝绸之路经过的新疆地区自古以来就是中国的领土,请写出西汉时加强对新疆管辖的史实.(2)根据材料二说出郑和和船队最远到达的地区.(3)根据材料三回答:1942年横渡大西洋到达今天美洲的航海家是谁?
(1)图一中学校的创办者是谁?是在谁的帮助下成立的?它的创办为哪一军队的建立和哪一重大军事行动奠定了基础?(2)图二反映的是哪次战役?参战部队的前身叫什么?这种名称的变化是哪次合作的产物?与此相关的这场战争的结果如何?(3)图三是哪支部队参与的战役?这场大战的欧洲战争胜利结束的标志是什么?(4)根据以上问题和所学知识,谈谈如图三幅图中合作的基础是什么。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。