二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).
解析:因为减法和除法运算中交换两个数的位置对计算结果有影响,所以属于组合的有2个.答案:B2.若A_n^2=3C_(n"-" 1)^2,则n的值为( )A.4 B.5 C.6 D.7 解析:因为A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故选C.答案:C 3.若集合A={a1,a2,a3,a4,a5},则集合A的子集中含有4个元素的子集共有 个. 解析:满足要求的子集中含有4个元素,由集合中元素的无序性,知其子集个数为C_5^4=5.答案:54.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?解:(方法一)我们把从共线的4个点中取点的多少作为分类的标准:第1类,共线的4个点中有2个点作为三角形的顶点,共有C_4^2·C_8^1=48(个)不同的三角形;第2类,共线的4个点中有1个点作为三角形的顶点,共有C_4^1·C_8^2=112(个)不同的三角形;第3类,共线的4个点中没有点作为三角形的顶点,共有C_8^3=56(个)不同的三角形.由分类加法计数原理,不同的三角形共有48+112+56=216(个).(方法二 间接法)C_12^3-C_4^3=220-4=216(个).
现在很多软件为了自身盈利的需要而夹杂了流氓软件,流氓软件安装之后又是极不容易卸载的。这些流氓软件可能会修改你的浏览器主页,定期打开某一网页等等,造成了我们使用电脑时的极大不便,这些软件还会记录下我们上网偏好,随时向我们发垃圾广告。所以下载安装软件一定要慎重。第三慎用U盘、移动硬盘之类的存储设备。某些破坏性的病毒可能导致移动存储设备损坏。我们在使用U盘之类的存储设备时也要小心谨慎,打开U盘时尽量不要双击打开,这样很可能会激活存在于里面的木马,使用打开前最好能够先杀一遍毒,甚至我们可以专门去网上搜取U盘木马专杀来预防电脑再次被感染。第四尽量不要在互联网上公布个人信息。除非是万不得已,否则不要公布自己任何详细的信息,以防被不良分子利用。另外在网上不要随意公布自己的邮箱,因为邮箱是一个十分便利的切入口来搜取你的个人信息,我们在各个网站注册时一般都会被要求留下邮箱,这样在这个过程中或多或少我们都会偷漏一些个人信息,如果通过搜取邮箱的方法获得你在各个网站上公布的个人信息经过综合整理很可能是自己更多的信息被公布出来。更多的我们考虑的自身安全问题,公布照片不仅使我们信息安全得不到保护,甚至现实中我们人身安全也可能因为一张照片而受到威胁。
一、存在的主要问题。 1、没有奋发进取的精神,在自己的工作中做得很好,但需要进一步加强。 2、经常为患者考虑的服务意识不足,有时因为自己的心情问题对患者的服务态度不足,需要进一步改善。 3、业务知识不足。工作不积极,业务知识钻研不足,只重视常见病多发病的诊断和治疗,不重视业务知识的全面性,缺乏钻研精神。 4、组织纪律有时松懈,上班时间有时脱岗,下一步改正。 5、上班时间因工作而上网,通过学习教育和深入思考,坚决消除这种事情。
各位老师、同学们:大家早上好!今天我非常荣幸的在这里给大家演讲 我演讲的题目是“用智慧和热情攀登学习的高峰”。充满激情和快乐的校运会刚刚结束,全校同学又将迎来一场新的竞技——期末考试。如同赛场上的展示一样,每一位同学都希望通过这次考试来检测自己一学期的学习效果,证明自己的学习能力和实力。同时大家也知道,优异的成绩必须通过智慧的过程和热情的奋斗来获得。什么是智慧的过程?智慧的过程就是要妥善安排复习计划并且有效地利用复习时间。我们要好好制订一个复习计划。有了复习计划,学习活动就可以目标明确地有序进行,检查和总结就有了标准和依据。恩格斯说:“没有计划的学习简直就是荒唐的事情。”学习好与差的一个重要区别就在于有无计划。需要指出的是同学们除了遵照执行老师的计划以外,还应该针对自己的情况,从学的角度更具体地制订出个人的复习计划。两方面互相照应配合,才能收到更好的复习效果。
问题导入:问题一:试验1:分别抛掷两枚质地均匀的硬币,A=“第一枚硬币正面朝上”,B=“第二枚硬币正面朝上”。事件A的发生是否影响事件B的概率?因为两枚硬币分别抛掷,第一枚硬币的抛掷结果与第二枚硬币的抛掷结果互相不受影响,所以事件A发生与否不影响事件B发生的概率。问题二:计算试验1中的P(A),P(B),P(AB),你有什么发现?在该试验中,用1表示硬币“正面朝上”,用0表示“反面朝上”,则样本空间Ω={(1,1),(1,0),(0,1),(0,0)},包含4个等可能的样本点。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率计算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)积事件AB的概率恰好等于事件A、B概率的乘积。问题三:试验2:一个袋子中装有标号分别是1,2,3,4的4个球,除标号外没有其他差异。
1.说教材《记念刘和珍君》是鲁迅先生用饱醮着热泪,用悲愤的笔调写下的一篇感人至深的散文,既有对爱国青年沉痛的悼念,又有对反动派愤怒的控诉,也有对觉醒的国民的呐喊。《记念刘和珍君》是高中语文必修1第三单元第一课的讲读课文。文中描摹人物的音容笑貌,叙述人物的行为事迹,都融入了作者真挚的情感和深刻的感悟。对学生明辨是非,领悟时代精神和人生意义,有着重要的作用。新课标强调了要全面提升高中学生的语文素养,初步形成正确的世界观、人生观、价值观,并学会收集、判断、处理信息,具有人文素养、创新精神与实践能力。同时,《记念刘和珍君》感情真挚,感悟深刻,具有典型人文性。结合本单元教学目标,确立教学目标如下。
一、对教材内容的处理根据新课程标准的要求、知识的跨度、学生的认知水平,我对教材内容有增有减。二、教学策略的选用(一)运用了模拟活动,强化学生的生活体验,本框题知识所对应的经济现象,学生已具有了一定的生活体验,但是缺乏对这种体验的深入思考。因此在进一步强化这种体验的过程中进行了思考和认知,使知识从学生的生活体验中来,从学生的思考探究中来,有助于提高学生的兴趣,有助于充分调动学生现有的知识,培养学生的各种能力,也有助于实现理论知识与实际生活的交融。(二)组织学生探究知识并形成新的知识我从学生的生活体验入手,运用案例等形式创设情境呈现问题,使学生在自主探索、合作交流的过程中,发现问题、分析问题、解决问题,在问题的分析与解决中主动构建知识。也正是由于这些认识来自于学生自身的体验,因此学生不仅“懂”了,而且“信”了。从内心上认同这些观点,进而能够主动地内化为自己的情感、态度、价值观,并融入到实践活动中去,有助于实现知、行、信的统一。
2、进一步感知数的互补关系。 3、在活动中,独立思考,认真书写。 活动准备: 1、经验准备:幼儿学习过6以内数的组成。 2、物质准备: 教具:记录纸和笔。 学具:(1)《幼儿用书》人手一册,笔人手一支。(2)组成连线:做成各种小动物形状的底纹,顶部写有6以内的总数,其他地方分为两排,可以使组成总数的数字或点子。 活动过程: 1、快乐碰一碰。 ◎“碰球”游戏。教师和幼儿共同玩“碰球”游戏,复习6以内各数的组成。 ◎找朋友碰一碰。请每个幼儿自己做一张5以内的数卡,贴在胸前,听音乐《找朋友》唱歌:找找找,找朋友,找到一个号朋友,握握手,碰一碰,我们合起来就是6。边唱边拍手找朋友,找到朋友后与他握握手,碰一碰身体。唱完以后还要再说一说:×和×合起来是6。
1、顺应时代需求,力保任务开展自20**年第十三届全国人大一次会议表决通过《中华人民共和国监察法》以来,国家反腐败工作深入开展,纪监委在开展审查调查的过程中,公安机关结合工作实际,从各个不同部门抽调看护人员,一方面,会给其他部门完成其本身的日常工作带来压力,另一方面会因为各自日常任务性质的不同导致看护人员专职不专,队伍不稳定,在执行看护任务时存在管理不严、业务不精、队伍松散等问题。因此,为了确保留置看护任务的顺利开展,成立一支更为规范化、专业化的看护队伍势在必行。
9.例二:如图,AB∩α=B,A?α, ?a.直线AB与a具有怎样的位置关系?为什么?解:直线AB与a是异面直线。理由如下:若直线AB与a不是异面直线,则它们相交或平行,设它们确定的平面为β,则B∈β, 由于经过点B与直线a有且仅有一个平面α,因此平面平面α与β重合,从而 , 进而A∈α,这与A?α矛盾。所以直线AB与a是异面直线。补充说明:例二告诉我们一种判断异面直线的方法:与一个平面相交的直线和这个平面内不经过交点的直线是异面直线。10. 例3 已知a,b,c是三条直线,如果a与b是异面直线,b与c是异面直线,那么a与c有怎样的位置关系?并画图说明.解: 直线a与直线c的位置关系可以是平行、相交、异面.如图(1)(2)(3).总结:判定两条直线是异面直线的方法(1)定义法:由定义判断两条直线不可能在同一平面内.
【教学目标】知识与技能目标:掌握对数函数的图像及性质;过程与方法目标:通过图像特征的观察,理解对数函数的性质,并从中体会从具体到一般及数形结合的方法;情感态度与价值观目标:在教学活动中培养学生的学习兴趣,感受数学知识的应用价值,体验知识之间的内在逻辑之美。【教学重点】对数函数的图像及性质。【教学难点】对数函数性质与应用。
二、对数函数的概念1. 计算对数的值 N1248x 思路(引入对数的概念):让学生依次计算、、、、、、,体会每一个真数都能找到唯一一个对数与之对应,这就形成了一个函数,我们称这个函数为对数函数。
二、活动准备: 1、人手一套围兜、袖筒。 2、足够的面粉。 3、各种颜料水。 三、活动过程: 1、出示面粉,引出活动。 师:这是什么?它可以做什么?(加工面条、制作饺子皮、扁食皮……) 今天我们要用面粉来制作五颜六色的彩泥。 (孩子们很兴奋,纷纷议论:这能做吗?怎么做呀?) 2、出示橡皮泥,师:要把面粉变成象老师手里的橡皮泥一样软,你们想想看有什么办法? (相当一部分孩子能说出应给面粉加水。)
【教师总结:联合国的会徽的世界地图象征着联合国是一个世界性的国际组织;图案中得橄榄枝象征着和平。联合国采取了很多措施以实现它的宗旨,如对于朝鲜违反国际法规进行核试验,联合国给予警告和制裁,充分体现了它维护国际和平与安全,促进国际合作与发展的宗旨。】对于中国与联合国的关系这部分内容,我将请阅读教材92页几幅图片及材料内容,设置活动探究课中国在联合国的声音和身影,请合作讨论思考以下两个问题,中国与联合国的关系;列举事实说明中国在国际社会中的重要作用。 教师通过剖析中国在联合国的地位和作用,引导学生理解中国在国际社会中发挥着重要作用,是负责任的国家;同时培养学生综合运用知识分析说明问题的能力,使学生感受作为中国人的自豪。【教师总结:中国是联合国的创始国之一,中国作为联合国的创始国和安理会常任理事国之一,一贯遵循联合国宪章的宗旨和原则,积极参与联合国及其专门机构有利于世界和平和发展的活动。】
【这部分的设计目的,要学生明白热带雨林只是一个案例,我们的目的是要合理开发和保护全世界的森林。由森林的开发与保护来明确区域发展过程中产生的环境问题,危害及治理保护措施。】然后知识迁移——东北林区的开发与保护介绍东北地区的森林材料:东北林区是我国最大的天然林区,主要分布于大、小兴安岭及长白山地,在平衡大气成分、净化空气、补给土壤有机质、涵养水源、保持水土、改善地方气候有重要的作用。它还是我国最大的采伐基地,宜林地区广,森林树种丰富。 东北林区开发中的问题及影响点拨:由于人类的严重超采,采育脱节,乱砍滥伐,毁林开荒,再加上森林火灾,东北林区的面积在锐减,带来了严重的生态恶化。我们该如何开发和保护东北地区的森林呢?
老师们,同学们:大家上午好!今天我国旗下讲话的题目是:为初三加油!XX届初三的孩子们:今天是6月11号,星期一,今天的升旗仪式是你们在母校最后一次升旗仪式!今天的升旗仪式是专门为你们准备的!在6月8日的毕业典礼上我收获了的是感恩、感动和感谢!说道最后一次升旗仪式,心中多少还有一些伤感和不舍。是啊,三年了!三年,在人生的长河里虽是短短的一瞬,但在我们的成长记忆里,却能绵延长长的一生。时光带不走童年欢笑,距离冲不淡少年趣事,三年初中生活的点点滴滴将成为我们一生中最宝贵的经历。在人生旅途中,让我们不时打开记忆的闸门,串起彼此的心灵吧!不能忘记,每天早晨不到六点你们就早早起床,大声朗读的声音;不能忘记,课堂上你们渴求知识的眼神;不能忘记,考场上你们苦思冥想、奋笔疾书的神态;不能忘记你们在每次考试总结会的豪言壮语;不能忘记,你们在百日冲刺誓师大会的信誓旦旦;不能忘记运动会上你们奋力拼搏尽情挥洒汗水的雄姿;不能忘记你们毕业典礼上流下感动的泪水。。。。。。
一.关于教学内容和教学要求的认识 本节课是一节探究性活动课,教学大纲上对数学活动课作了这样的解释:“数学活动课指在教师的指导下,通过学生自主活动,以获得直接经验和培养实践能力为主的课程。教育的目的在于弥补数学学科课程的不足,加强实践环节,重视数学思维的训练,培养学生的学习兴趣,促进学生志趣、个性、特长等自主和谐发展, 从而全面提高学生的数学素质”。可见教学大纲把实习和开展探究性教学放在了重要的地位。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。