二十年前,我们还是~~学校的学子,在母校的养育下,在老师们的辛勤栽培中,我们一步步的成长为一名名出色的毕业生。回顾那三年的时间,那真是一段既美好又短暂的时光,那是我们共同生活的时光。比起这二十年来,这三年的长度也许遥不可及,但是无论我们在这二十年里经历了多少,这三年,依旧是我们最为美好的记忆!
教学过程:一、导入1、问题导入。师:猜猜这位大师是谁?【课件】生:回答。2、了解乐曲作曲家及相关知识。师:李斯特是著名的匈牙利作曲家。少年时期他随父母去了巴黎,成名以后回到祖国,广泛收集匈牙利民歌和吉普赛音乐,写下了19首在其创作中占有重要地位的匈牙利狂想曲。这些音乐具有匈牙利吉普赛人的热情,是匈牙利民族音乐的杰出作品,其中尤以第二号匈牙利狂想曲最为著名。二、学习歌曲师:这首狂想曲以匈牙利民间舞曲查尔达什体裁写成,分成庄重慢板和奔放急板两大部分。乐曲前半部分在滞缓的节奏衬托下,低沉压抑的旋律蕴含了巨大的悲愤,表现了匈牙利人不屈的性格。尤其是引子部分,在这一段中,右手是弹奏长音,左手是弹奏带装饰音的八分音符;大小和弦交替进行,声音不适宜太长,太长了显得松弛,要具有力度和爆发感。(接着乐曲在高音区反复并转入舞曲风格的轻快曲调,富有动力性。第二部分乐曲的速度加快,先奏出舞曲的主题,然后力度再逐渐增加,速度越来越快;接着涌现了一个个富有个性的主题,音乐的高潮此起彼伏,如旋风般旋转的舞曲在狂热的高潮中结束。)
2.发展幼儿的观察力,培养幼儿简单的推理能力。 3.感知十二生肖所包括的12种动物、十二生肖的排列顺序,感知、了解十二生肖一年一种属相,12年一个轮回的规律。 活动准备: 1.教具:自制生肖钟、山洞大山的图片。 2.学具:蛋糕盒制作的钟面、十二生肖的图片.胶水等 3.知识准备:幼儿认识时钟。 活动重点:幼儿知道十二生肖的排列顺序。 活动难点:知道十二生肖每12年轮回一次。 活动过程: 一、导入 出示生肖钟,引出课题,激发幼儿兴趣。 二、展开 1.了解十二生肖的12种动物,简单的感知其排列顺序,理解其含义。 (1)请幼儿说出钟面上有多少种动物,为什么?我们来数一数,看看是不是12种。从哪开始数呢?老鼠第一?谁第二?谁第六?小兔第几? (2)小朋友当中有没有属“小老鼠”的?为什么说自己是属“小老鼠”的?(引出“属相”一词,丰富幼儿词汇)小朋友还知道有什么属相?
出示朱德挑粮画面,让学生说说看到的朱德,培养学生的语言表达能力,并从说中感悟挑粮的多、沉、重,体会朱德挑粮的艰辛。
主题教育开展以来,XX省审计厅对标D中央部署和省委要求,一体推进理论学习、专题调研、检视问题整改、推动发展,推动主题教育走深走实。始终把理论学习摆在首位。通过强化以上率下带动学、强化融合互促联动学、强化重点践行学、强化措施督促学,厅D委班子成员带头读原著学原文悟原理,以“专题授课讲+审计一线讲+青老联学讲”等方式为审计D员干部讲授专题D课6次,召开中心组专题学习研讨会3次,开展D支部(含审计组临时D支部)学习研讨56次,开展1次审计青年D员“书香黔审、青春悦读、岗位建功”主题读书分享会,召开1次主题教育青老联学座谈会,专题学习、反复重温对审计工作作出的重要讲话和重要指示批示。采取“请进来+走出去”方式举办1期读书班和2期处级干部培训班,多次开展专题辅导交流研讨、小组研讨、中心组集中研讨等方式,推动个人自学与集中领学、互动研学、专家导学、视频教学有机融合。主题教育读书班被省主题教育办评价等次为“好”,相关做法被省主题教育简报和《XX日报》刊载。定期督促引导审计D员干部学好“必读篇”,深学“业务篇”,掌握“最新篇”。
把学习贯彻有关主题教育系列重要讲话,与学习贯彻对福建、对民政工作的重要讲话重要指示批示精神结合起来,与学习贯彻D的二十大精神结合起来,做到一体学习、一体领会、一体贯彻。四是丰富形式“乐学”。制定局机关青年理论学习计划,开展“青年大学习”行动,结合“中秋、国庆”两节举办“感悟思想伟力、书写青春华章”青年读书分享会,开展形式多样的“三会一课”、主题D日活动,通过寓教于乐,增强学习吸引力和感染力。五是警示教育“促学”。结合全市民政系统突出问题专项治理,开展警示教育,组织全系统D员干部职工开展旁听巡听、观看警示教育片,召开警示教育大会,以案释纪、以案释法,用身边事教育人,坚定不移推进全面从严治D向纵深发展,持续营造风清气正的良好政治生态,扎实推进主题教育走深走实。六是现场交流“活学”。组织D员干部到闽西革命历史博物馆开展现场教学,深入了解革命时期闽西人民在中国共产D领导下所进行的可歌可泣的革命斗争历史,更加深切地感受、朱德等老一辈无产阶级革命家对中国革命事业作出的重大贡献,达到学思想、强D性、重实践、建新功的效果。
二、说教学目标 根据本教材的结构和内容分析,结合××年级学生的认知结构及其心理特征,我制定了以下的教学目标:1.知识与技能目标:××。2.过程与方法目标:××。3.情感态度与价值观目标:××。 三、说教学的重、难点 本着××新课程标准,在吃透教材基础上,我确定了以下的教学重点和难点。1.教学重点:××。 重点的依据:只有掌握了××,才能理解和掌握××。2.教学难点:××。 难点的依据:××较抽象;学生没有这方面的基础知识。 为了讲清教材的重、难点,使学生能够达到本框题设定的教学目标,我再从教法和学法上谈谈。
以人为本,说学情为了更好地掌握学情,课前可以进行调查。课前我对学生访谈的内容为:1、你认为你的优点是什么?2、你在学习中遇到过困难和烦恼吗?能说说你在学习上遇到的困扰是什么吗?经过课前调查了解学生存在的问题并分析原因,以便有的放矢地进行教学。将学生学习生活实际与教材相关事例进行整合,从生活切入,进入文本,走向真实的学习实践。本单元是学生升人小学中年段后的第一个学习单元。三年级的小学生经过低年段两年的学习,已经积累了一些学习经验,这为探究如何进一步提高学习效率提供了可能的条件。学生学习经验和经历是教学的切入口,学生每天都在经历着学习,但他们对“更快更好的学习”缺乏科学认识。一部分学生还依赖于老师、家长的监督和帮助,学习主动性不强,兴趣缺乏。但他们跟一二年级的学生也有明显的差别,自我认识正悄悄萌芽,对事物的认识逐渐由直观向理性过度,这为教学的展开提供了契机。
同学们,听说过《两袖清风》这个成语故事吗?这个成语故事说的是明朝正统年间,宦官王振以权谋私,每逢朝会,各地官僚为了讨好他,都献以珠宝白银,巡抚于谦每次进京奏事,总是不带任何礼品。他的同僚劝他说:“你虽然不献金宝、攀求权贵,也应该带一些著名的土特产如线香、蘑菇、手帕等物,送点人情呀!”于谦笑着举起两袖,风趣地说:“带有清风!”以示对那些阿谀奉承之贪官的嘲弄。两袖清风的成语从此便流传下来。古往今来,有多少清正廉洁、务实为民的清官受到百姓的崇敬与爱戴,他们的形象深入人心,他们的故事久久传颂。一代清官包公、海瑞的故事热映荧屏,久演不衰;人民公仆孔繁森、牛玉儒、任长霞的事迹震撼人心,影响甚广。是的,无论历史如何变迁,无论时代怎样发展,廉洁永远是时代的呼唤,廉洁永远是人民的期盼。
本节课选自《普通高中课程标准数学教科书-必修一》(人教A版)第三章《函数的概念与性质》,本节课是第2课时,本节课主要学习函数的三种表示方法及其简单应用,进一步加深对函数概念的理解。课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.课程目标 学科素养A.在实际情景中,会根据不同的需要选择恰当的方法(解析式法、图象法、列表法)表示函数;B.了解简单的分段函数,并能简单地应用;1.数学抽象:函数解析法及能由条件求函数的解析式;2.逻辑推理:求函数的解析式;
课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.课程目标1、明确函数的三种表示方法;2、在实际情境中,会根据不同的需要选择恰当的方法表示函数;3、通过具体实例,了解简单的分段函数,并能简单应用.
检视整改,从字面上理解,包括两层含义,一是检视,就是查摆问题,分析原因,明确努力方向;二是整改,就是聚焦问题,靶向治疗,纠正工作偏差。这次主题教育检视整改形成了一些好机制。检视整改与其他重点措施有机融合、相互贯通。一个突出表现就是要求领导干部把调研发现的问题与推动发展遇到的问题、群众反映强烈的问题以及巡视巡察、审计监督等暴露的问题,一并列出问题清单进行整改,这既体现了边学习、边对照、边检视、边整改的要求,也有效解决了调查研究与检视整改相脱节的问题。开展性分析要求明确、特色鲜明。开展性分析,是严肃内政治生活的一项经常性工作。的十八届六中全会通过的《关于新形势下内政治生活的若干准则》中明确,“督促员对照章规定的员标准、对照入誓词、联系个人实际进行性分析”。
二、教学设计的理念与思路。 阅读是个性化的过程,不能以教师的思维而取代学生思维,所以,我在引导学生阅读的时候,强调以学生为主体,让他们自读自悟,说一说感兴趣的景色,抄一抄优美的句子。关注他们情感的生成、个性的体验和生活的联系。 阅读不仅仅是人文性教育,更不可忽视的是语文基本技能的训练,课标提出这一学段的学生能"用普通话正确、流利、有感情地朗读课文"、"理解词句的意思"、"积累课文中的优美词句、精彩语段"等要求。所以我引导学生在解读课文的过程中,同时进行词语的运用,朗读的训练,写法的提炼,使人文性与工具性融为一体。 三、教学过程的安排及意图。 根据课文任务量,我将用两节课完成教学。第一节课的任务是通读课文及精读课文第1~4自然段。第二节课的任务是品读5~7自然段及识字。下面我说说第一节课的安排与意图。
环境问题 是伴着人口问题、资源问题和发展问题产生。本质是发展问题 ,可持续发展。6分析可持续发展的概念、内涵和 原则?可持续发展的含义:可持续发展是这样的发展,它既满足当代人的需求,而又不损害后代人满足其需求的能力。可持续发展的内涵:生态持续发展 ,发展的基础;经济持续发展,发展条件;社会持续发展,发展目的。可持续发展的原则:公平性原则——代内、代际、人与物、国家与地区之间;持续性原则——经济活动保持在资源环境承载力之内;共同性原则— —地球是一个整体。【总结新课】可持续发 展的含义:可持续发展是这样的发展,它既满足当代人的需求,而又不损害后代人满足其需求的能力。可持续发展的内涵:生态持续发展,发展的基础;经济持续发展,发展条件;社会持续发展,发展目的。
一、敬岗爱业,要热爱教育事业,要对教学工作有“鞠躬尽瘁”的决心 既然我们选择了教育事业,就要对自己的选择无怨无悔,不计名利,积极进取,开拓创新,无私奉献,力求干好自己的本职工作,尽职尽责地完成每一项教学工作,不求最好,但求更好,不断的挑战自己,超越自己。 二、加强政治学习,不断提高政治素养 自己应该系统地学习《义务教育法》、《中华人们共和国教师法》、《教师资格条例》等法律法规文件,按照《中小学教师职业道德规范》严格要求自己,奉公守法,恪尽职守,遵守社会公德,忠诚人民的教育事业,为人师表。
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。