
解析:由于多边形(三边以上的)不具有稳定性,将其转化为三角形后木架的形状就不变了.根据具体多边形转化为三角形的经验及题中所加木条可找到一般规律.解:过n边形的一个顶点可以作(n-3)条对角线,把多边形分成(n-2)个三角形,所以,要使一个n边形木架不变形,至少需要(n-3)根木条固定.方法总结:将多边形转化为三角形时,所需要的木条根数,可从具体到一般去发现规律,然后验证求解.三、板书设计1.边边边:三边对应相等的两个三角形全等,简写成“边边边”或“SSS”.2.三角形的稳定性本节课从操作探究活动入手,有效地激发了学生的学习积极性和探究热情,提高了课堂的教学效率,促进了学生对新知识的理解和掌握.从课堂教学的情况来看,学生对“边边边”掌握较好,达到了教学的预期目的.存在的问题是少数学生在辅助线的构造上感到困难,不知道如何添加合理的辅助线,还需要在今后的教学中进一步加强巩固和训练

解:(1)电动车的月产量y为随着时间x的变化而变化,有一个时间x就有唯一一个y与之对应,月产量y是时间x的因变量;(2)6月份产量最高,1月份产量最低;(3)6月份和1月份相差最大,在1月份加紧生产,实现产量的增值.方法总结:观察因变量随自变量变化而变化的趋势,实质是观察自变量增大时,因变量是随之增大还是减小.三、板书设计1.常量与变量:在一个变化过程中,数值发生变化的量为变量,数值始终不变的量称之为常量.2.用表格表示数量间的关系:借助表格表示因变量随自变量的变化而变化的情况.自变量和因变量是用来描述我们所熟悉的变化的事物以及自然界中出现的一些变化现象的两个重要的量,对于我们所熟悉的变化,在用了这两个量的描述之后更加鲜明.本节是学好本章的基础,教学中立足于学生的认知基础,激发学生的认知冲突,提升学生的认知水平,使学生在原有的知识基础上迅速迁移到新知上来

分式1x2-3x与2x2-9的最简公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最简公分母为x(x+3)(x-3).方法总结:最简公分母的确定:最简公分母的系数,取各个分母的系数的最小公倍数;字母及式子取各分母中所有字母和式子的最高次幂.“所有字母和式子的最高次幂”是指“凡出现的字母(或含字母的式子)为底数的幂的因式选取指数最大的”;当分母是多项式时,一般应先因式分解.【类型二】 分母是单项式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先确定最简公分母,找到各个分母应当乘的单项式,分子也相应地乘以这个单项式.解:(1)最简公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最简公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最简公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.

方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 构造直角三角形解决面积问题在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面积.解析:过点A作AD⊥BC于点D,根据勾股定理求出BD、AD的长,再根据解直角三角形求出CD的长,最后根据三角形的面积公式解答即可.解:过点A作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.

(1) 美育目标:通过引导学生初步认识人与自然的关系,激发学生热爱自然,保护绿色生命的情感。(2) 知识目标:鼓励学生大胆地、有个性的用自编故事、绘画方式等去表达对大树的情感。(3) 能力目标:通过本课的学习,培养学生的想象能力、儿童画创作能力、语言表达能力等。

一、教学内容:两位数减一位数和整十数(不退位)(课本第67页)。二、教学目标:1、知识与技能:让学生经历探索两位数减一位数和整十数(不退位)的计算方法的过程,掌握计算方法,能正确地口算。2、过程与方法:让学生经历自主探索、动手操作、合作交流等方式获得新知的过程,积累数学活动的经验,体会数学知识与日常生活的密切联系,增强应用意识。3、情感态度与价值观:进一步培养学生学习数学的热情,以及积极思考、动手实践并与同学合作学习的态度。三、教学重点:掌握两位数减一位数和整十数(不退位)的口算方法。四、教学难点:理解算理,把握两位数减一位数与两位数减整十位数在计算过程中的相同点与不同点。五、教具准备:课件、题卡、等。六、教学过程:(一)、创设情境,提出问题。

2.送信。实物投影仪演示反馈。(1)方法说明。你是怎么想的?(2)错误纠正。分层校对:做完的先互相批改,然后集体先校对丁当组题,再校对一休组题。重点讲评一休组题目。六、总结今天你有哪些收获?(1)退位减法要注意什么?不要忘记退位。(2)退位减法的方法。为学生提供学习材料,让学生通过活动联系生活实际学习新知,让学生感受到数学源于生活,用于生活;采用分层教学,整个学习过程都是学生在小组中合作研究、探索中完成的;然后通过多种形式的练习加以巩固;注重学习过程的开放;通过小组合作,培养学生善于发表自己的观点,会倾听同学的意见的能力。同时也培养学生学会提出问题、解决问题的能力。

第二步,我在教具上拨几个分针指的数字大点的时刻看同学们是否认识,并且能否说上为什么,接着我告诉大家先看时针,时针刚走过几或正指向几就是几时。再看分针,分针走了几大格我们就用几乘以5,然后再加上刚过这个大格又走的小格数。第三步,我拨几个时刻让同学们告诉我是几时几分。第五环节:认识表示法。在刚才第四环节时我就在在黑板上写出几个数字表示法的时间和几个汉字表示法的时间,通过对比让同学们记住两种表示法。第六环节:加强练习。通过课件出示钟面让学生认识时刻、同桌一个拨时刻一个说钟面上表示的时刻、请一位学生说出一个时刻让大家在自己的学具上拨出时刻这些活动让学生将认识时刻这一能力得到巩固。第七环节:课外拓展。1、我拨时针和分针让同学们说出此时的时针和分针形成了什么角,将上一单元知识得到巩固。2、如果时间允许,我拨时针和分针问学生在这个时刻再经过10分钟或再经过15分钟是几时几分。

本课内容是普通学校教材,主要针对的是普通学校学生,主要包括了四个知识点,第一个问题由拨计数器的情境出发,从序数的角度,由千以内的数和一千之间的关系引出对“千”的认识。第二个问题结合拼摆小方块的活动,体会“个”、“十”、“百”、“千”之间的十进关系,直观感受“千”的大小。第三个问题就是结合数数活动进一步感受“千”的意义,掌握三位数的数数方法。第四就是安排的“试一试”,集合估计和对比想象的活动,发展学生的数感。针对普通学生这是2课时的内容,第一课时安排解决前三个问题,这对于我们听障学生来说课时容量太大,另外今天是微课只有30分钟,尤其是第三个问题数数更是难点,遇到9加1变十、99加1变百、999加1变千时的转化更是难点,所以本节课我只安排了第一和第二个问题,并且在教学第一个问题“千”的引入中加入“9加1变十、99加1变百、999加1变千”的内容,为学生下节课学习数数分散了难点,提前做好了铺垫。

二、学情分析本单元是在学生已经学习了整数除法、分数乘法的基础上进行教学的,是小学阶段四则运算中最后一部分的内容。学生学习了整数、小数的四则运算,而分数只学习了加法、减法和乘法,因此对于学习分数除法有一定的认知需求,安排分数除法教学符合学生的认知发展特点。通过整数除法、分数乘法的学习,学生对计算的学习有一定的经验,并具有一定的解决问题的能力,这时候进行分数除法教学,学生有能力将原有的计算方法和经验进行迁移。学生在学习分数乘法时,已经掌握了一些解决分数乘法问题的方法,这时候进行分数除法教学可以促进知识之间的联系,提高学生分析问题和解决问题的能力。教师在教学时,应充分利用资源,激活学生已有的知识经验,引导他们展开类比思维,以促进学习的正向迁移。三、教学目标根据新课标的要求和教材的特点,结合五年级学生的认知能力,本节课我确定如下的教学目标:

[此环节的设计意图是利用情景激发学生探究的欲望,让学生带着轻松、愉悦的心情投入到新知的学习中。](二)自主探究感悟新知教育心理学告诉我们,学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。(在儿童的学习活动中,兴趣起着定向和动力功能的双重作用。)以这一理论为指导,我设计了以下三个层次渐深的活动,大胆放手让学生自主探究,从而突出重点、突破难点。活动一:理解分数乘整数的意义。让学生通过折一折的活动自主计算,并归纳整理出学生的三计算方法:①根据分数的意义数一数是3/5;②加法计算1/5+1/5+1/5=3/5;③乘法计算3*1/5=3/5,展示在黑板上,引导学生通过观察对比发现,其实3*1/5就是3个1/5相加,由此感知到分数乘整数的意义与整数乘法的意义相同,只是这里的相同加数变成了分数。

教学重点:体验1分时间的长短,建立一分钟的概念。教学难点:估计一分钟有多长学情分析本班学生对时分的知识在一年级已经有了一个初步的认识。能区分时针、分针和秒针;能初步认识钟面上的整点、半点;但是整点刚过和接近整点学生区分还有困难。二、说学生本节课的教学对象是二年级的学生,他们生活经验少,但思维比较活跃,他们还是以无意注意为主,而无意注意是由刺激物的特点引起的,在教学时,尽可能创设生动的数学活动,密切数学与生活的联系,使知识变成学生的切身需要,使他们在玩中学,在动中求知,通过操作交流去探索创新。三、说教学法在教材的处理上,我联系生活实际,用灵活多变的活动激发学生的学习情感,充分放手让学生大量开展多种形式有趣的实践活动,开放的情境,引导学生体验。使学生较好的认识一分并且对于一分能干什么也会有深刻的认识。

本环节我依据教学目标和学生对知识的掌握情况,我设计了有针对性、层次分明的练习题(基本题、变式题、拓展题),让学生在解决这些问题的过程中,进一步理解,巩固新知,训练思维的灵活性,使学生的探索精神和实践能力得到进一步的提高。[本环节的设计意图:通过多层次的练习,激发学生的学习兴趣,调动学生学习的积极性和主动性,使学生获得愉悦的情感体验。同时使学生的知识结构更加完善。]第四环节:课堂小结在轻松愉快的学习活动结束后,我会与学生进行总结对话“这节课你有什么收获?你学会了什么?还有什么不懂得地方吗?”学生充分发言,交流自己的学习心得。[本环节的设计意图:帮助学生梳理知识,整理本课的知识要点,完成本节课的教学活动。]

5. 作业: 作业我同样选取不同题型的五个计算题,目的是想查看学生学的效果如何,是否对哪类题型还留有疑问。 6. 自我评价: 这堂课我觉得满意的,是能够利用短暂的45分钟把要学的知识穿插在学与练当中,充分地利用了课堂有限的时间,并且能让学生边学边练,及时巩固。 当然这堂课也有很多不足之处,我觉得自己对于课堂上学生做练习时出现的一些小问题处理还没有能够处理得很好,我应该吸取经验教训,再以后的教学中加以改进。 另外对于多个有理数相乘时的符号问题,我觉得自己归纳得还不是很到位,我想解决的办法是在以后的练习中再做些补充,让学生加深理解。从中我也得到一个教训,再以后的教学工作中,我还应该多学习教学方法,多思考如何归纳知识点,才能更好地帮学生形成一个系统的知识系统!

还有其他解法吗?从中让学生体会解一元一次方程就是根据是等式的性质把方程变形成“x=a(a为已知数)”的形式(将未知数的系数化为1),这也是解方程的基本思路。并引导学生回顾检验的方法,鼓励他们养成检验的习惯)5、提出问题:我们观察上面方程的变形过程,从中观察变化的项的规律是什么?多媒体展示上面变形的过程,让学生观察在变形过程中,变化的项的变化规律,引出新知识.师提出问题:1.上述演示中,题目中的哪些项改变了在原方程中的位置?怎样变的?2.改变的项有什么变化?学生活动:分学习小组讨论,各组把讨论的结果上报教师,最好分四组,这样节省时间.师总结学生活动的结果:-2x改变符号后从等号的一边移到另一边。师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.

1.上述演示中,题目中的哪些项改变了在原方程中的位置?怎样变的?2.改变的项有什么变化?学生活动:分学习小组讨论,各组把讨论的结果上报教师,最好分四组,这样节省时间.师总结学生活动的结果:-2x改变符号后从等号的一边移到另一边。师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.(三)理解性质,应用巩固师提出问题:我们可以回过头来,想一想刚解过的方程哪个变化过程可以叫做移项.学生活动:要求学生对课前解方程的变形能说出哪一过程是移项.对比练习: 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解.师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、化简、检验.)

接着引导学生进一步思考截面可不可以是特殊的三角形:等腰三角形和等边三角形。教师用课件演示切截过程,展示切截位置的变化引起截面形状的变化,图形特殊化。使学生的思考经历由一般到特殊的过程。2.截面是其他形状学生先猜想正方体的截面还有可能是什么形状,再利用实验操作型课件对正方体进行无限次的切截,让学生在无限次切截的过程中体会截面产生和变化的整个过程,发现截面产生和变化的规律。学生从切截活动中发现猜想时没有想到的截面图形,体会到探索的乐趣。教师再引导学生归纳正方体截面边数的规律。学生的认知得到升华。接着引导学生归纳截面形状中的特殊四边形。二.圆柱体和圆锥体的截面学生先猜想圆柱体的截面可能是什么形状,教师利用实验操作型课件对圆柱体进行无限次的切截,学生观察截面形状。

一、说教材1、教学内容《左右》是义务教育课程标准实验教科书数学一年级上册第二单元“位置”第二课时的内容。2、教学内容的地位与作用《左右》是前后上下的延续性学习。但认识左右比认识前后上下要困难一些。“左右”的含义及其相对性要具有更强的空间观念。通过学习,可以发展学生的空间观念,为以后认识立体图形建立空间立体感打好基础,提高解决实际问题的能力,使学生初步感受数学与生活的联系。3、教学目标(1)认识“左右”的位置关系,体会其相对性。(2)在认识“左右”的过程中,培养初步的判断能力,能够运用“左右”描述物体的位置,并解决简单的实际问题。(3)通过生动有趣的数学活动,使学生体会到学习数学的乐趣,增强对数学学习的兴趣。4、教学重点:认识“左右”的位置关系5、教学难点:体会“左右”的相对性

尊敬的各位领导、老师:大家好!我说课的内容是人教版一年级上册第6页至第8页准备课的第二课时《比多少》。我将从教学背景分析、教学目标、教学流程、教学设计特色几方面谈谈我对这节课的设想。一、教学背景分析(一)教材分析本课时通过让学生开展简单的比较活动,经历并体验比较的过程,初步学习比较的方法,为以后的数学学习做思想方法上的准备。另外这一课,也是后面认知各数大小以及学习后面数学知识的基础。书中是以小猪盖房子的故事开始,激发学生学习兴趣,通过“在情境图中找一找,比一比”,让学生自己寻找可比的对象,选择比较的标准来“比”,给学生较大的自由发挥空间,体现“以人为本”、“以发展为宗旨”的素质教育新理念和目标。(二)学情分析 “比多少”这部分内容,学生在学习它之前,已经学习了数数,有了一定的数学基础,所以学习比多少时学生上路还是比较快的。学生一般在入学前对它们都有了初步的认识,通过对各种物体的感知,已经积累了感性经验。但是在判断时学生往往是凭直觉,不一定会用一一对应的方法来比较两组物体的多少或者用数一数的办法来比较多少。基于以上的了解,我进行了这样的思考。

各位评委、老师,大家好,我今天说课的课题是九年义务教育人教版一年级数学上册第八单元第一课时《9加几》。一.说教材: 《9加几》是一年级上册第八单元的教学内容。本节内容是学生建立“凑十法”计算概念的初次接触,也为以后计算的正确率和提高运算速度打下牢固的基础。教材在编写上注重从学生的生活经验出发,让学生在生动具体的生活环境中学习数学。本单元的内容编排体现了三个特点:一是从情境中提出数学问题,二是呈现多种计算方法,三是让学生动手操作、观察、理解算理、掌握算法。注重培养学生初步应用数学的意识和解决问题的能力。本节课的目标为: (一)知识技能:理解“凑十法”,初步掌握9加几的进位加法的思维过程,并能正确的计算9加几。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。