时光的沙漏里,细沙流走的是光阴;淡淡檀香里,袅袅燃尽的也是光阴。中国共产主义青年团走过了一百年的光辉岁月,谱写了一段又一段可歌可泣的壮丽篇章。回望来时路,有风雨,有坎坷,有苦难;环看现在时,有机遇,有挑战,有昂扬;展望未来梦,有光明,有希望,有期许。能成为一名共青团员,加入团组织的大家庭,对我来说,是莫大的光荣,也是满满的自豪。生命如歌,或抑扬顿挫,或婉转悠扬。三年过去,忙碌而充实,付出着,收获着。如果说高中是本人生的教科书,如今我有幸读了这本书,并已进入书的完结篇,也或许只是其中一篇的尾声,但三年前“为共产主义事业奋斗”的慷慨誓言,仍在我耳边不断回响。作为共青团员的每寸光阴,都让我于心铭记。
守护幸福不打烊...... 各位老师、同学:大家好!今天,我讲话的题目是《做一个诚信的人》。有这样一个故事:美国一位的心理学家为了研究母亲对人一生的影响时收到两封信,一封来自白宫一位人士,一封来自监狱一位服刑的犯人。他们谈的都是同一件事:小时候母亲给他们分苹果。那位来自监狱的犯人在信中这样写道:小时候,有一天,妈妈拿来几个苹果,红红的,大小各不同。我一眼就看见中间的一个又红又大,十分喜欢,非常想要。这时,妈妈把苹果放在桌上,问我和弟弟:你们想要哪个?我刚想说想要最红的一个,这时弟弟抢先说出我想说的话。妈妈听了,瞪了他一眼,责备他说:好孩子要学会把好东西让给别人,不能总想着自己。于是,我灵机一动,改口说:“妈妈,我想要那个最小的,把大的留给弟弟吧。“妈妈听了,非常高兴,在我的脸上亲了一下,并把那个又红又大的苹果奖励给我。我得到了我想要的东西,从此,我学会了说谎。以后,我又学会了打架、偷、抢,为了得到想要得到的东西,我不择手段。直到现在,我被送进监狱。
《花的学校》是一首优美而富有童趣的诗歌,作者用拟人手法,展开了丰富的想象。作者巧妙地从孩子的眼中叙出花儿们的活泼、可爱、美丽、向上,充满了儿童情趣。诗歌的语言和所描绘的情境很能调动学生相关的情感体验,激发他们的学习兴趣,使他们对学习内容产生亲近感。教学中我注重学生的朗读指导,读出花孩子的天真烂漫、活泼可爱、勇敢坚强、活泼向上、童真童趣。同时也注重培养学生的问题意识。课文的想象非常大胆、有趣、合理,可以结合课后练习题让学生进行想象力训练。
一、知识和技能1.使学生了解地球的圈层构造,初步掌握地球内部圈层的组成和划分依据2.使学生了解各内部圈层的界限、厚度、物理性状等。二、过程和方法1.使学生了解研究地球内部构造的方法,从而认识人类对未知事物所进行的探索实践,激发同学们学科学、爱科学的兴趣及责任感。2.了解地球内部圈层划分实况及各层主要特点,从宏观上认识全球的整体面貌,形成地球系统观念。3.通过归纳、总结、对比地球内部各层的特点,对学生进行综合归纳等思维能力的培养和训练。三、情感、态度、价值观通过学习对学生进行热爱自然、热爱科学的教育,鼓励学生献身于科学教育事业。【教学重点】1.地震波的波速及传播特点,区别横波与纵波。2.地球内部圈层划分实况及各层主要特点,特别是地壳的特点。3.岩石圈概念,软流层知识。
晶晶和亮亮是两滴岩浆,他们生活在地球内部的:岩浆之家。一天,他们得到批准,与其他同伴一起到地球表面进行旅行。他们飞快地奔向地表,半路上,晶晶觉得累了,于是就与亮亮约好,在地表汇合。亮亮没有停步,与其他伙伴一起跳出地表,并沿着山坡往低处流动。忽然,亮亮发现自己不能再动了,不禁问旁边的同伴这是怎么一回事。同伴笑着说:“别担心,只不过你已经不再是岩浆罢了。”问题1、为什么同伴说亮亮已经不再是一滴岩浆了?2、你认为亮亮还可以继续他的地表旅行吗?请说明原因。(由学生讨论回答。)过了好长的一段时间,亮亮发现自己的个头变小了,并随着风和流水往前运动了。亮亮边走边欣赏着地表美丽的风光。忽然,亮亮发现一个熟悉的身影,认真一看,原来是晶晶。亮亮惊讶地问:“你是怎么来到地表的?”3、请你简要推测晶晶到达地表的过程。(由学生讨论回答。)亮亮和晶晶又一起踏上旅程。
(三)在XX市税务局的指导下,单位职工的支持下,驻村工作队已开展2024年度四期消费帮扶,帮助销售农副产品、鲜花共计4万元,拓展村民销售渠道,带动村民致富;(四)驻村工作队在XX市税务局的协调下,邀请市组织部一行前往我村考察项目发展,协调解决我村温室大棚项目实际难题。三、立足乡村振兴舞台,大力发展产业兴旺2024年上半年我村产业发展乘扬帆之势,奋力赶超。驻村工作队争取资金20万投资的徐郢村电商集聚区现已正式投入使用,淠东乡徐郢村电商集聚区位于徐郢村村部东侧,现占地约45亩,目前入驻企业为7家,主要销售品类为锦鲤、鲜花、家禽等土特产品,基本形成产、存、销闭环。目前电商集聚区总投入约597万元,有主体建筑4栋。一是3层电商办公楼,该楼总投资200万,由乡财政资金投入180万,帮扶单位投入20万,为3层结构,含电商办公室7间,展示区1间、直播间2间,目前均投入使用。
一、强化领导组织,完善规章制度为进一步提高计划分配军队转业干部、退役士兵及随军家属安置工作质量,推动我市退役军人安置和培养使用工作创新发展,依据中共中央、国务院、中央军委、吉林省制定的军队转业干部、退役士兵及随军家属暂行办法等有关政策规定,现市委编办正会同市委组织部等部门研究起草《退役军人及随军家属安置和培养使用管理办法》,目前该办法初稿已完成正在修改完善中。该办法主要有如下特点,一是明确分工落实责任。明确了市委组织部、市委编办、市退役军人局在退役军人安置和培养使用过程中的主要责任。二是把握原则定准方向。明确了退役军人及随军家属使用编制原则、选择接收单位原则、干部培养等原则。三是强化能力培养历练。明确了要对退役军人强培养,并接受必要的基层锻炼。四是开辟干部晋升通道。明确了干部任过程中退役军人优先使用和破格提拔的条件。五是规范程序严格落实。明确了退役军人安置流程、工作办法、安置时限。
一、政府工作报告重点任务完成情况防返贫监测帮扶方面,我们县乡联动、部门协同,真抓实干坚守不发生规模性返贫的底线。一是突出联动预警。围绕“三保障一安全”等方面突出问题和关键信息,组织教育、医保、民政、住建等14家行业部门筛选比对预警信息2.48万条,反馈至乡镇、村研判核实;二是突出集中排查。组织驻村工作队、村干部、网格员采取“全面排查+重点突出”的方式,对全县XX万户农户进行全面排查,对新识别整户低保、突发严重困难户等对象重点核查,2023年已新增监测对象XX户XX人,制定并落实措施XX条,有效化解了各类返贫风险;三是突出重点帮扶。紧盯人均纯收入“低于1万元”和“较上年下降”的脱贫人口两类重点群体,实行一户一策帮扶。“三保障一安全”上,今年实施农村危房改造XX户,资助困难学生XX万人次、XX万元,脱贫户、监测户基本医保参保率100%,实施农村安全饮水工程227处改善提升XX万人饮水质量。
第二部分:我们的运营情况我们认为合作公司的优势在于一是有效利用村级资源,比如今年月11份,我们以乡村振兴为契机,利用农闲劳动力,承接乡村振兴项目建设,二是资源融合。合作公司可以整合整个村集体的资源资产,介入土地经营权流转、农村闲置房屋产权等市场交易。三是重点发展红栀子基地、果树种植采摘等项目,利用闲置荒地租赁土地200亩种植苗圃基地,以镇政府为主,主导张家港广水市城南创业工业园,张家港美丽乡村建设.四是抱团发展。我们李店镇目前20个村已经全部成立了人民公司,各有优势特长,未来我们可以相互融合、抱团取暖,实现集团化发展。第三部分:我们的共富路径我们的收益分配是,公司分红收益按6:2:2模式分配,即:60%用于再发展;20%用于全体股民按所持股份比例分红;20%用于村公益事业开支(包括奖励助学、文明评选、尊老扶弱等)。
2.锻炼幼儿运用逆向思维的方式进行运算,培养幼儿的运算兴趣;3.让幼儿充分感受成功解决数学问题的乐趣。 活动准备教师准备:电话号码卡两张;l一10的数字卡;幼儿准备:熟悉自己家的电话号码;电话号码册、铅笔、橡皮等。 活动组织:1.导入活动师:昨天晚上,我接到从我们班转学的豪豪小朋友打来的电话,他说很想你们,那你们想不想他?如果想他,怎样和他联系?(让幼儿自由讨论,引出打电话的想法。)师:他家的电话号码是xxxxxxxx,(出示电话号码)我们来数数他家的电话号码是几位?(幼儿一起点数)他家电话号码的第几位数是几?
一、教材分析人教版高中思想政治必修4生活与哲学第一单元第三课第二框题《哲学史上的伟大变革》。本框主要内容有马克思主义哲学的产生和它的基本特征、马克思主义的中国化的三大理论成果。学习本框内容对学生来讲,将有助于他们正确认识马克思主义,运用马克思主义中国化的理论成果,分析解决遇到的社会问题。具有很强的现实指导意义。二、学情分析高二学生已经具备了一定的历史知识,思维能力有一定提高,思想活跃,处于世界观、人生观形成时期,对一些社会现象能主动思考,但尚需正确加以引导,激发学生学习马克思主义哲学的兴趣。三、教学目标1.马克思主义哲学产生的阶级基础、自然科学基础和理论来源,马克思主义哲学的基本特征。2.通过对马克思主义哲学的产生和基本特征的学习,培养学生鉴别理论是非的能力,进而运用马克思主义哲学的基本观点分析和解决生活实践中的问题。3.实践的观点是马克思主义哲学的首要和基本的观点,培养学生在实践中分析问题和解决问题的能力,进而培养学生在实践活动中的科学探索精神和革命批判精神。
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
二是中国人口多、资源相对不足日益成为制约发展的突出矛盾。我国人均水资源拥有量仅为世界平均水平的1/4,600多个城市中,400多个缺水,其中110个严重缺水。我国人均耕地拥有量不到世界平均水平的40%。石油、天然气、铜和铝等重要矿产资源的人均储量分别只占世界人均水平的8.3%、4.1%、25.5%、9.7%。三是我国这20年来经济快速发展,能源浪费大、环境破坏严重等问题日益凸显,人与自然的矛盾从未像今天这样突出。无序、无度的消耗,迅速透支我们宝贵的资源。以下是来自国家环保总局的一组沉甸甸的数据。——从上世纪50到90年代,每年沙化土地扩大面积从560平方公里增加到2460平方公里,我国18个省的471个县、近4亿人口的耕地和家园正受到不同程度的荒漠化威胁。——1952年我国人均耕地2.82亩,2003年人均耕地减少到1.43亩,在各地轰轰烈烈的“圈地”热潮中仅最近7年全国耕地就减少了1亿亩,被占耕地大量闲置。
◇探究提示:(1)孔子思想体系的核心是“仁’’和“礼”,其主要内容是“仁者爱人”和“克己复礼”。孔子提出“仁”的学说,要求统治者体察民情,反对苛政和任意刑杀;提倡广泛地理解、体贴他人,以此调整人际关系,稳定社会秩序。孔子讲的“克己复礼”,是说做人要克制自己,使自己的行为符合‘‘礼’’的要求。(2)老子认为“道”是凌驾于天之上的天地万物的本原,他提出‘‘天法道,道法自然”的思想。老子从“天道自然无为”的思想出发,倡导政治上“无为而治”,以“无事取天下”。老子哲学中包含着丰富的辩证法思想,他指出,任何事物都有矛盾、对立的两个方面,矛盾双方可以相互转化。(3)墨子主张“兼爱”“非攻”,“兼爱”就是无等差的爱,无论任何人,都不分轻重厚薄;“非攻”就是反对不义的兼并战争,主张各国和平相处。(4)韩非子崇尚法,强调法的重要性,主张法、术、势相结合,建立一个君主专制的中央集权国家,要求人人必须遵守法;韩非子还认为社会不断发展变化,历史永远不会倒退,主张变法革新。
3、运用目标(1)运用所学知识说明世界真正的统一性就在于它的物质性(2)运用所学知识及相关哲学原理,分析作为物质观发展的第一个基本阶段,古代朴素唯物主义物质观的局限性,从分析论证中加深对辩证唯物主义物质观的科学性的理解(3)列举实际事例,结合相关哲学原理,讨论如果只承认运动的绝对性,而否认静止的相对性会导致的结果,分析马克思主义哲学为什么要坚持绝对运动与相对静止的统一(4)世界是有规律的,规律是普遍的。列举实际事例,分析任何事物都有其内在的规律性,规律是客观的,是不以人的意志为转移的,但是人在规律目前并不是无能为力的二、能力目标1、培养学生自觉运用马克思主义的物质观分析宇宙间一切事物及现象的能力2、锻炼学生理论联系实际的能力,培养学生正确认识世界的本质,并能够自觉地按照客观规律办事的能力
把解集在数轴上表示出来,并将解集中的整数解写出来.解析:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集,再找出解集范围内的整数即可.解:x+23<1 ①,2(1-x)≤5 ②,由①得x<1,由②得x≥-32,∴不等式组的解集为-32≤x<1.则不等式组的整数解为-1,0.方法总结:此题主要考查了一元一次不等式组的解法,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.三、板书设计一元一次不等式组概念解法不等式组的解集利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的基础之上.解不等式组时,先解每一个不等式,再确定各个不等式组的解集的公共部分.
方法总结:已知解集求字母系数的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解题过程体现了方程思想.三、板书设计1.一元一次不等式的概念2.解一元一次不等式的基本步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)两边都除以未知数的系数.本节课通过类比一元一次方程的解法得到一元一次不等式的解法,让学生感受到解一元一次不等式与解一元一次方程只是在两边都除以未知数的系数这一步时有所不同.如果这个系数是正数,不等号的方向不变;如果这个系数是负数,不等号的方向改变.这也是这节课学生容易出错的地方.教学时要大胆放手,不要怕学生出错,通过学生犯的错误引起学生注意,理解产生错误的原因,以便在以后的学习中避免出错.
有三种购买方案:购A型0台,B型10台;A型1台,B型9台;A型2台,B型8台;(2)240x+200(10-x)≥2040,解得x≥1,∴x为1或2.当x=1时,购买资金为12×1+10×9=102(万元);当x=2时,购买资金为12×2+10×8=104(万元).答:为了节约资金,应选购A型1台,B型9台.方法总结:此题将现实生活中的事件与数学思想联系起来,属于最优化问题,在确定最优方案时,应把几种情况进行比较.三、板书设计应用一元一次不等式解决实际问题的步骤:实际问题――→找出不等关系设未知数列不等式―→解不等式―→结合实际问题确定答案本节课通过实例引入,激发学生的学习兴趣,让学生积极参与,讲练结合,引导学生找不等关系列不等式.在教学过程中,可通过类比列一元一次方程解决实际问题的方法来学习,让学生认识到列方程与列不等式的区别与联系.
安装及运输费用为600x+800(12-x),根据题意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整数,所以x=2,3,4.答:有三种方案:①购买甲种设备2台,乙种设备10台;②购买甲种设备3台,乙种设备9台;③购买甲种设备4台,乙种设备8台.方法总结:列不等式组解应用题时,一般只设一个未知数,找出两个或两个以上的不等关系,相应地列出两个或两个以上的不等式组成不等式组求解.在实际问题中,大部分情况下应求整数解.三、板书设计1.一元一次不等式组的解法2.一元一次不等式组的实际应用利用一元一次不等式组解应用题关键是找出所有可能表达题意的不等关系,再根据各个不等关系列成相应的不等式,组成不等式组.在教学时要让学生养成检验的习惯,感受运用数学知识解决问题的过程,提高实际操作能力.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。