1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
1、 前提条件:①环境几乎一样的平原地区,人口分布均匀2、 ②区域的运输条件一致,影响运输的惟一因素是距离。城市六边形服务范围形成过程。(理解)a.当某一货物的供应点只有少数几个时,为了避免竞争、获取最大利润,供应点的距离不会太近,它们的服务范围都是圆形的。 b.在利润的吸引下,不断有新的供应点出现,原有的服务范围会因此而缩小。这时,该货物的供应处于饱和。每个供应点的服务范围仍是圆形的,并彼此相切c.如果每个供应点的服务范围都是圆形相切却不重叠的话,圆与圆之间就会存在空白区。这里的消费者如果都选择最近的供应点来寻求服务的话,空白区又可以分割咸三部分,分别属于三个离其最近的供应点。[思考]①图2.15中城市有几个等级?②找出表示每一等级六边形服务范围的线条颜色?③叙述不同等级城市之间服务范围及其相互关系?3、理论基础:德国南部城市4、意义:运用这种理论来指导区域规划、城市建设和商业网点的布局。1、 应用——“荷兰圩田居民点的设置”。
学生探究案例:找出不同等级城市的数目与城镇级别的关系、城镇的分布与城镇级别的关系并试着解释原因。在此基础上,指导学生一步步阅读书上的阅读材料,首先说明这是德国著名的经济地理学家克里斯泰勒对德国南部城市等级体系研究得出的中心地理论,他是在假设土壤肥力相等、资源分布均匀、没有边界的平原上,交通条件一致、消费者收入及需求一致、人们就近购买货物和服务的情况下得出的理想模式。然后指导学生阅读图2.14下文字说明,理解城市六边形服务范围形成过程。指导学生读图2.15,找出图中城市的等级、每一等级六边形服务范围并叙述不同等级城市之间服务范围及其相互关系,从而得出不同等级城市的空间分布规律,六边形服务范围,层层嵌套的理论模式。给出荷兰圩田空白图,让学生应用上面的理论规划设计居民点并说出理由,再和教材上的规划进行对照。然后给出长三角地区城市分布图和各城市人口数,让学生对这些城市进行分级,概括每一级城市的服务功能、统计每一等级城市的数目以及彼此间的平均距离,总结城市等级与服务范围、空间分布的关系?
31.阅读下列材料,回答问题。材料一 农,天下之大本也,民所恃以生也。而民或不务本而事末,故生不遂。——汉文帝材料二 世儒不察,以工商为末。妄议抑之。夫工商圣王之所欲来,商又使其愿出于途者,盖皆本也。——黄宗羲(1)材料一反映了中国古代哪一重要思想?据此,西汉统治者采取了哪些措施?(2)材料二中黄宗羲提出了什么主张?应如何评价这一主张?
(1)材料一中,谁曾经走过古丝绸之路?材料二 海上丝绸之路把丝绸远销海外,还把中国古代的发明创造,如(四大发明) 、 、 、印刷术、瓷器、医学、中草药等传布到世界各地。——陈炎《海上丝绸之路与中外文化交流》(2)请将材料二中三处画“_______” 的部分在答题卡上补充完整。材料三 明朝中期,随着日本国内社会动荡加剧,特别是由于明朝国力减弱,海防松懈,倭寇与中国海盗奸商等相互勾结,对中国沿海的武装抢劫日益猖獗。……沿海各地遭到重大破坏,时称“倭患”。——中国历史七年级下册 (3)根据材料三和所学知识,分析明朝中期出现“倭患”的原因是什么?倭寇猖獗之时,谁临危受命南下抗倭?(4)1684年,为了加强对东南地区的管辖,清政府在台湾设置了什么机构?
19.中国古代一直实行和平开放的对外政策。但是,从明朝中期开始,对外环境发生了变化。阅读下列材料回答问题。材料一 (见下图两个人物) (1)材料一中,谁曾经走过古丝绸之路?材料二 海上丝绸之路把丝绸远销海外,还把中国古代的发明创造,如(四大发明) 、 、 、印刷术、瓷器、医学、中草药等传布到世界各地。——陈炎《海上丝绸之路与中外文化交流》(2)请将材料二中三处画“_______” 的部分在答题卡上补充完整。材料三 明朝中期,随着日本国内社会动荡加剧,特别是由于明朝国力减弱,海防松懈,倭寇与中国海盗奸商等相互勾结,对中国沿海的武装抢劫日益猖獗。……沿海各地遭到重大破坏,时称“倭患”。——中国历史七年级下册 (3)根据材料三和所学知识,分析明朝中期出现“倭患”的原因是什么?倭寇猖獗之时,谁临危受命南下抗倭?
老师们、同学们,大家新年好!伴随着雄壮的义勇军进行曲,鲜艳的五星红旗再次在我们眼前冉冉升起,一个充满希望的新学期已经开始了。大家刚刚经过了一个愉快而有意义的寒假,度过了一个非常值得回味的新春佳节。回首刚刚过去的一年,全体同学勤奋好学,全体教职工严谨教学。过去的一年我们全体竹中人齐心协力、勤奋学习、扎实工作,学校获得了很好的发展,同学们取得了不错的成绩。XX年高考我校再创辉煌,大批同学被高校录取,在上学期期中、期末考试中我校成绩表现良好。全体教师的专业素养得到了很好的发展和提升,在溧阳市第九批“四类优秀教师”评选中,我校有24位老师被评为“四类优秀教师”,在学科基本功竞赛和优秀课评比中,我校有10多位老师获等级奖,同时学校也承担了10多次市级学科教研活动和校际教研活动,2次学科理事会年会活动。同时,学生的特长和能力也得到了很好的彰显,在参加江苏省第十五届作文大赛中,有35位同学获奖。在初中英语口语比赛中有3位同学分别获一等奖和三等奖。在八年级“古诗文创作”比赛中有2位同学获奖,同时有不少同学被评为省、市、校级“三好学生”、“优秀学生干部”。等等。
2、文明办公,保持办公室内安静,提高工作效率;忌做有害他人工作的事情;构建和谐的办公环境。 3、保持办公室卫生整洁,办公用品、各种用具应陈放整齐有序。 4、按时认真地做好本组室及走廊的卫生值日工作。 5、准时参加校、组室临时性会议,升旗仪式等,且严格遵守会场纪律。
1. 应聘手续 所有应聘者均应填写《长沙金汉方应聘登记表》并提供个人简历,学历证书复印件、身份证复印件等有关证明资料,并附个人1寸或2寸免冠彩色照片2张.2. 个人资料 个人资料需填写完整,且无误,本人需对资料的真实性负责,一旦发现资料虚假且情节严重着予以辞退,其主要包括:姓名,身份证号(身份证真假性),家庭原地址,隐瞒身体有传染性或严重性疾病,原工作单位名称以及离职原因,家庭成员以及电话,地址。3. 资信考察根据员工的资料情况,人事部将适当的对员工的资信进行调查,主要包括:上网查询身份证号码、电话查询原工作单位情况、电话查询家庭电话和地址情况、上网查询毕业证的真实性、一个月以内办好健康证4. 试用期 A、新进员工试用期1个月. (员工未满15天自动离职者将不计工资,7天内公司劝退者将不计工资)B、试用期内,公司将对员工的工作态度(学习和遵守公司的规章制度、与同事和睦相处、人品),工作能力(接受培训能力、业务素质的理解能力)及工作绩效(收集客源、跟踪顾客、相关应聘业务项目的表现)等进行考核(见《新员工考核表》),考核合格者将转为正式职工,对考核不合格者,公司将予以辞退或不计薪酬再学习. C、员工因工作绩效出色可提前结束试用期,经直接上司或负责人提案,报人力资源部批准后可予提前转为正式员工. D、试用期期的员工自己解决住宿问题。5、培训,教育 新进员工都必须接受3个工作日的系统培训,公司根据人数的多少开展封闭式训练,如果个别员工则由指定的老员工或负责人一带一培训,新进员工在7天内接受人力资源的初步考核。培训的主要课题有: A、公司的创业及发展 B、产品的荣誉、成分、使用方法、功能、价格、 C、2008年全年工作规划 D、公司的业务流程 E、简要的医学常识,量血压,35项的使用和讲解,营销工具的使用 F、各项管理制度的学习 G、简要的疑问解答 H、发单技巧、体验式迎接顾客技巧、 I、个人职业规划6、制服,证件及其它领用物品 A、公司给正式的员工发放统一制服,公司标徽,员工证,员工手册。(《新进员工物品领取表》)除员工服装外,其他的物品遗失每项50元的补办费用或扣款费用。B、员工服装的说明:和员工签订员工服装协议.以及员工着装规定。7、定岗 A、定岗时间:1-3个月试用期过后,根据员工的培训情况和综合素质和能力定岗。 B、定岗的原则:最高部长级别的定岗先从副职开始定岗。 C、定岗和工资级别挂钩。
第一节员工准则1. 目的 提升企业形象和员工服务素质,营造良好的工作环境。2. 适用范围 全体员工。3. 职责3.1 行政人事部负责制订全体员工日常行为规范; 3.2 各部门负责人培训及管理下属员工的日常行为,并对优秀/违规员工做出奖惩。4、职业准则(1)公司倡导正大光明、诚实敬业的职业道德,要求全体员工自觉遵守国家政策法规和公司规章制度。(2)员工的一切职务行为,必须以公司利益为重,对社会负责。不做有损公司形象或名誉的事。(3)公司提倡简单友好、坦诚平等的人际关系,员工之间应互相尊重,相互协作。(4)公司内有亲属关系的员工应回避从事业务关联的工作。5、员工未经公司授权或批准,不能从事下列活动:(1)以公司名义考察、谈判、签约等公众活动(2)以公司名义提供担保或证明(3)以公司名义对新闻媒体发表意见、信息(4)对外提供机密公司文件,以及其它未经公开的经营情况、业务数据。对于盗用和泄漏公司机密而给公司带来损失的员工,公司将追究其法律责任。(5)将公司的资金、车辆、设备、房产、原材料、产品及其它资产等擅自赠送、转让、出租、出借、出售、抵押。一经发现,员工必须按原值赔偿公司,并接受相应的处罚,情节严重者,公司将追究其法律责任。6、公司禁止下列情形兼职(1)利用公司的工作时间或资源从事兼职工作(2)兼职于公司的业务关联单位或商业竞争对手(3)所兼职工作对本单位构成商业竞争(4)因兼职影响本职工作或有损公司形象7、公司禁止下列情形的个人行为(1)参与业务关联单位或商业竞争对手经营管理的(2)投资于公司的客户或商业竞争对手的(3)以职务之便向投资对象提供利益的(4)以直系亲属名义从事上述三项投资行为的(5)在对外业务中发生回扣或佣金的,须一律上缴公司财务部,否则视为贪污8、保密义务:1、员工有义务保守公司的经营机密,务必妥善保管所持有的涉密文件。2、员工未经授权或批准,不准对外提供公司密级文件、技术配方、工艺以及其他未经公开的经营情况、业务数据等。9、行为准则 9.1 着装与礼仪规范(1) 上班时间应保持着装得体,不得奇装异服、赤足、赤膊、穿短裤、背心和拖鞋;(2) 同事之间称呼应为姓+老师(或职务);(3) 进入各办公室应先敲门再进入,如有他人,应等待,急需办理的工作可征得同意后进入;(4) 同事之间应主动问好,遇到困难应相互协助。9.2 接待规范(1) 客人来访时,员工应做初步的接待,同时通知相关人员到门口迎接;(2) 客人来访结束后,被访人应亲自将来访者送至大门口,送离访客后应对接待区域进行清洁整理;
小草因为其出土前的奋力一搏,而感受到了春天的爱抚;雄鹰因为其飞翔前的奋力一搏,而感受到了天际的广阔;鲤鱼因为其跃过龙门前的奋力一搏,而看到了龙门那面的美丽景色……自然界如此,人生亦复如是,我们只有拼搏奋斗,才可以使自己的生命之路变得更加辉煌。人人都渴望成功,人人都羡慕成功者,但成功者的背后,是起早贪黑练习的艰辛,是凭着自己坚持不懈的品质。居里夫人发现了镭,是在一间十分狭小的的破草棚里,对几吨的沥青进行提炼之后,才得到了一克镭,这其间的艰辛又有谁了解呢?当成功者站在领奖台上,那鲜花与笑容背后,是他们矢志不渝的奋斗。要问成功的秘诀是什么,只有两个字:奋斗!但有些同学认为取得好成绩是靠运气,从此便守株待兔,作业不认真做,不努力学习了,这样取得好成绩吗?学海无涯,任何知识领域都是没有止境的。没有永远的成绩,只有永远的奋斗。理想和现实,仅一步之遥,但这一步必须付出艰辛的劳动和辛勤的汗水,成绩的彼岸可望也可及,但是它永远属于勇敢的跋涉者。
诚信是一个人一生当中最基本的道德观念。通俗地讲,“诚”就是不自欺,“信”就是不欺人,“诚信”就是真诚的对待自己和他人。千百年来,人们讲求诚信,推崇诚信。那么,作为当代社会的中学生,我们是否也应该做一个诚信的人呢?答案当然是肯定的。但是同学们请仔细想想,自己平时是否做到诚信了呢?在进校门的一刹那,你突然想起自己没带校牌,你是会乘机混进去还是主动向老师说明情况?晚上作业未完成,你是会抄袭他人作业还是主动坦白,承认错误?每当这时,我们应该扪心自问,问问自己是否做到了诚信,是否拥有诚信。平时生活中的小事,无不体现着诚信。我们应把诚信作为人生当中的一个路标,诚信对人,诚信对己,诚信对待即将到来的第二次段考。
有人这样形容我们,我们是早晨冉冉升起的太阳,充满了青春活力,多么快乐,多么美丽!然而,你有没有想过,在我们离开母亲的搀扶,摇摇晃晃地行走在人生道上以后,我们美好的生命靠的是什么?有人说:“是生存还是死亡”,也有哲人说:“艰难和困惑是生命的本身”,我思来想去,只能说是“安全”!安全捍卫着我们的生命,维护我们生存的权利。但是随着气温的升高,炎炎的夏季即将来到,夏季是溺水事故的高发期,每年时有学生溺水事件的发生,蓓蕾初开,前程无限,却被无情的河水所吞噬,令人痛心。有关数据显示,目前全国每年有万名中小学生非正常死亡,平均每天约有40多名学生死于溺水、交通或事物中毒等事故,几乎相当于我们一个班的个数啊!其中溺水死亡居意外死亡之首。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。