授课 日期 班级16高造价 课题: §6.3等比数列 教学目的要求: 1.理解等比数列的概念,能根据定义判断或证明一个数列是等比数列;2.探索并掌握等比数列的通项公式; 3.掌握等比数列前 n 项和公式及推导过程,能用公式求相关参数; 教学重点、难点:运用等比数列的通项公式求相关参数 授课方法: 任务驱动法 小组合作学习法 教学参考及教具(含多媒体教学设备): 《单招教学大纲》 授课执行情况及分析: 板书设计或授课提纲 §6.3等比数列 1.等比数列的概念 (学生板书区) 2. 等比数列的通项公式 3.等比数列的求和公式
教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 8.3 两条直线的位置关系(二) *创设情境 兴趣导入 【问题】 平面内两条既不重合又不平行的直线肯定相交.如何求交点的坐标呢? 图8-12 介绍 质疑 引导 分析 了解 思考 启发 学生思考 *动脑思考 探索新知 如图8-12所示,两条相交直线的交点,既在上,又在上.所以的坐标是两条直线的方程的公共解.因此解两条直线的方程所组成的方程组,就可以得到两条直线交点的坐标. 观察图8-13,直线、相交于点P,如果不研究终边相同的角,共形成四个正角,分别为、、、,其中与,与为对顶角,而且. 图8-13 我们把两条直线相交所成的最小正角叫做这两条直线的夹角,记作. 规定,当两条直线平行或重合时,两条直线的夹角为零角,因此,两条直线夹角的取值范围为. 显然,在图8-13中,(或)是直线、的夹角,即. 当直线与直线的夹角为直角时称直线与直线垂直,记做.观察图8-14,显然,平行于轴的直线与平行于轴的直线垂直,即斜率为零的直线与斜率不存在的直线垂直. 图8-14 讲解 说明 讲解 说明 引领 分析 仔细 分析 讲解 关键 词语 思考 思考 理解 思考 理解 记忆 带领 学生 分析 带领 学生 分析 引导 式启 发学 生得 出结 果
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.2正弦型函数. *创设情境 兴趣导入 与正弦函数图像的做法类似,可以用“五点法”作出正弦型函数的图像.正弦型函数的图像叫做正弦型曲线. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 5*巩固知识 典型例题 例3 作出函数在一个周期内的简图. 分析 函数与函数的周期都是,最大值都是2,最小值都是-2. 解 为求出图像上五个关键点的横坐标,分别令,,,,,求出对应的值与函数的值,列表1-1如下: 表 001000200 以表中每组的值为坐标,描出对应五个关键点(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲线联结各点,得到函数在一个周期内的图像(如图). 图 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 15
一、定义: ,这一公式表示的定理叫做二项式定理,其中公式右边的多项式叫做的二项展开式;上述二项展开式中各项的系数 叫做二项式系数,第项叫做二项展开式的通项,用表示;叫做二项展开式的通项公式.二、二项展开式的特点与功能1. 二项展开式的特点项数:二项展开式共(二项式的指数+1)项;指数:二项展开式各项的第一字母依次降幂(其幂指数等于相应二项式系数的下标与上标的差),第二字母依次升幂(其幂指数等于二项式系数的上标),并且每一项中两个字母的系数之和均等于二项式的指数;系数:各项的二项式系数下标等于二项式指数;上标等于该项的项数减去1(或等于第二字母的幂指数;2. 二项展开式的功能注意到二项展开式的各项均含有不同的组合数,若赋予a,b不同的取值,则二项式展开式演变成一个组合恒等式.因此,揭示二项式定理的恒等式为组合恒等式的“母函数”,它是解决组合多项式问题的原始依据.又注意到在的二项展开式中,若将各项中组合数以外的因子视为这一组合数的系数,则易见展开式中各组合数的系数依次成等比数列.因此,解决组合数的系数依次成等比数列的求值或证明问题,二项式公式也是不可或缺的理论依据.
重点分析:本节课的重点是离散型随机变量的概率分布,难点是理解离散型随机变量的概念. 离散型随机变量 突破难点的方法: 函数的自变量 随机变量 连续型随机变量 函数可以列表 X123456p 2 4 6 8 10 12
授课 日期 班级16高造价 课题: §10.1 计数原理 教学目的要求: 1.掌握分类计数原理与分步计数原理的概念和区别; 2.能利用两个原理分析和解决一些简单的应用问题; 3.通过对一些应用问题的分析,培养自己的归纳概括和逻辑判断能力. 教学重点、难点: 两个原理的概念与区别 授课方法: 任务驱动法 小组合作学习法 教学参考及教具(含多媒体教学设备): 《单招教学大纲》、课件 授课执行情况及分析: 板书设计或授课提纲 §10.1 计数原理 1、加法原理 2、乘法原理 3、两个原理的区别
课程课题随机事件和概率授课教师李丹丹学时数2授课班级 授课时间 教学地点 背景分析正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件;分类用加法原理,分步用乘法原理,单纯这点学生是容易理解的,问题在于怎样合理地进行分类和分步教学中给出的练习均在课本例题的基础上稍加改动过的,目的就在于帮助学生对这一知识的理解与应用 学习目标 设 定知识目标能力(技能)目标态度与情感目标1、理解随机试验、随机事件、必然事件、不可能事件等概念 2、理解基本事件空间、基本事件的概念,会用集合表示基本事件空间和事件 1 会用随机试验、随机事件、必然事件、不可能事件等概念 2 会用基本事件空间、基本事件的概念,会用集合表示基本事件空间和事件 3、掌握事件的基本关系与运算 了解学习本章的意义,激发学生的兴趣. 学习任务 描 述 任务一,随机试验、随机事件、必然事件、不可能事件等概念 任务二,理解基本事件空间、基本事件的概念,会用集合表示基本事件空间和事件
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 10.4 用样本估计总体 *创设情境 兴趣导入 【知识回顾】 初中我们曾经学习过频数分布图和频数分布表,利用它们可以清楚地看到数据分布在各个组内的个数. 【知识巩固】 例1 某工厂从去年全年生产某种零件的日产记录(件)中随机抽取30份,得到以下数据: 346 345 347 357 349 352 341 345 358 350 354 344 346 342 345 358 348 345 346 357 350 345 352 349 346 356 351 355 352 348 列出频率分布表. 解 分析样本的数据.其最大值是358,最小值是341,它们的差是358-341=17.取组距为3,确定分点,将数据分为6组. 列出频数分布表 【小提示】 设定分点数值时需要考虑分点值不要与样本数据重合. 分 组频 数 累 计频 数340.5~343.5┬2343.5~346.5正 正10346.5~349.5正5349.5~352.5正  ̄6352.5~355.5┬2355.5~358.5正5合 计3030 介绍 质疑 引领 分析 讲解 说明 了解 观察 思考 解答 启发 学生思考 0 10*动脑思考 探索新知 【新知识】 各组内数据的个数,叫做该组的频数.每组的频数与全体数据的个数之比叫做该组的频率. 计算上面频数分布表中各组的频率,得到频率分布表如表10-8所示. 表10-8 分 组频 数频 率340.5~343.520.067343.5~346.5100.333346.5~349.550.167349.5~352.560.2352.5~355.520.067355.5~358.550.166合 计301.000 根据频率分布表,可以画出频率分布直方图(如图10-4). 图10-4 频率分布直方图的横轴表示数据分组情况,以组距为单位;纵轴表示频率与组距之比.因此,某一组距的频率数值上等于对应矩形的面积. 【想一想】 各小矩形的面积之和应该等于1.为什么呢? 【新知识】 图10-4显示,日产量为344~346件的天数最多,其频率等于该矩形的面积,即 . 根据样本的数据,可以推测,去年的生产这种零件情况:去年约有的天数日产量为344~346件. 频率分布直方图可以直观地反映样本数据的分布情况.由此可以推断和估计总体中某事件发生的概率.样本选择得恰当,这种估计是比较可信的. 如上所述,用样本的频率分布估计总体的步骤为: (1) 选择恰当的抽样方法得到样本数据; (2) 计算数据最大值和最小值、确定组距和组数,确定分点并列出频率分布表; (3) 绘制频率分布直方图; (4) 观察频率分布表与频率分布直方图,根据样本的频率分布,估计总体中某事件发生的概率. 【软件链接】 利用与教材配套的软件(也可以使用其他软件),可以方便的绘制样本数据的频率分布直方图,如图10-5所示. 图10?5 讲解 说明 引领 分析 仔细 分析 关键 语句 观察 理解 记忆 带领 学生 分析 25
演讲稿频道《国旗下的讲话演讲稿:遵规守纪 做文明乐安人》,希望大家喜欢。各位领导老师同学大家早上好:冬天的早晨是寒冷的,但是每周一早晨同学们都会排着整齐的队伍,喊着响亮的口号站在国旗下举行庄严的升国旗仪式。为什么?答难只有两个字---纪律。俗话说;没有纪律不成方圆。一个社会,一个团体,只有在良好的纪律维持下,才会逐渐的走向成熟。今天我要和同学们说遵守纪律做文明乐安人。《中小学生守则》和《中学生日常行为规范》已经给了我们明确的目标:自尊自爱,注重仪表,真诚友爱,礼貌待人,遵规守纪,勤奋学习,勤劳俭朴,孝敬父母。我们乐安实验学校的各项校规、校纪和这些守则规范是完全一致的。比如说,学校有明确要求:穿着得体大方,待人谦虚礼貌、言行文明适度等等。这些说起来简单,但做起来可就不那么容易了。有些同学总是怀着侥幸心理,认为偶尔违反一两条纪律没什么关系。
尊敬老师、亲爱的同学们,大家好!今天我演讲的题目是《助人是快乐之本》我曾经看过这样一个故事,一位小女孩去医院探望哥哥时捎上了一朵鲜花。隔壁床的一位病人看见了也希望拥有这么一朵漂亮的花。于是,小女孩每次去探病都不忘为这位陌生人也带上一朵花。后来,这位病人为了让幸福散播开去,在医院旁边开了一个小店,让经过他小店去探病的人也带上一朵鲜花。结果医院里每一个角落都充满着欢乐。在困境中的人,伤心的人,拥有一朵花,感觉就像拥有了整个春天。我们只要为他们献出一片暖暖的关爱,那么,我们就会为他们营造了一个幸福的天堂。在我们生活中,我们都喜欢被别人关心的感觉,我们都希望得到别人的支持和理解。
同学们,你们知道本周四是什么节日吗?对,感恩节!在西方国家,每年11月的最后一个星期四就是“感恩节”,在感恩节那天,人们都要欢聚一堂,举行各种庆祝活动,感谢、颂扬在过去一年里帮助过自己的人,并且尽可能去帮助他人。徐嘉意,上次你跳绳满100个mISSLU奖励你一个橘子,你马上说留给妈妈吃,说明你是一个懂得感恩的孩子,下面请你来说说你是怎么感恩长辈的。一(2)班徐xx:尊敬的老师、亲爱的同学们,大家早上好:在西方,每逢感恩节,人们会团聚在一起,感谢帮助过自己的人。人们还会做好事,去帮助身边有困难的人。今年的感恩节,我要感谢我的长辈。回家帮爷爷奶奶捶捶背,敲敲腿,感谢他们对我的照顾。给爸爸妈妈一个热情的拥抱,感谢他们的养育之恩。徐嘉如,你有什么好主意?
质疑问难,合作探究 1、文章是介绍沙子的知识吗? 明确: 有关恐龙灭绝的原因,原来本文的主角不是沙子,而是恐龙。 2、题目是《被压扁的沙子》,内容却恐龙灭绝的原因,题目《被压扁的沙子》是否偏离主题了?我们换成《恐龙是怎样灭绝的》会不会更好? 本文题目不但没有离题,还能提示读者,恐龙灭绝的“撞击说”所以产生,与被压扁的沙子的科学发现和科学研究密不可分此外,文题形象性强,容易激起好奇心,引起人们的阅读兴趣 3、恐龙灭绝的原因一直是学术界有争议的问题,因而产生两种学说“撞击说”“火山说”在探究恐龙灭绝的原因时,作者的观点是什么?他的观点以什么为依据,又是怎样推论出来的?
我们一家乘车行驶在黄土高原上,眺望远处云朵,尽情享受着清风的洗礼……因为我们要回老家喽!倘若乖乖地欣赏美景,是坐不住的。虽说有起伏不定的高原,波涛汹涌的黄河,不时从石缝里“蹦”出来的水丝帘,一望澄澈的蓝天,悠然飘过的白云……可当这一切的美景同时“刷”在你的眼前,且接连不断地出现时,还是会让你感到几分乏味。因为,这可是八小时的长途跋涉啊!每到这时候,车里的人们就疯狂了起来。虽说只有区区四人,可还是组成了一个超级合唱团。不信你看爸爸已经兴奋起来。只见他清清嗓子,扭动身子,接着便“肆无忌惮”地高声唱起来。妈妈则是一副欲唱又止的样子,最终也只是淡淡地笑了笑。在这一刹那,妈妈神情是最复杂也是最可爱的。是快乐还是骄傲?是幸福还是羞涩?总之,略有些放不开。后来,她也开始有节奏地在车门上敲击,敲出一串美妙又兴奋的声音。好像她所有的快乐都被谱成了一首无拘无束的歌。
4.充当状语的名词和中心词之间要连读,即名词作状语时,一般在该词前停顿,且不能把状语与中心词读开。若分开读,就错将状语当成了主语,改变了句子的意思。5.“而”字后应该停顿。但“而”字在句中若起到下列作用,那么就不能停顿,也就是说,“而”字不能和后面的词语分开读,应该连读。(1)“而”在句中如果连接的是形容词(或副词)与动词,即“形容词(副词)+而+动词”,这时前边的形容词或副词充当状语,起修饰后面的动词的作用,不能分开读。(2)“而”在句中如果连接的是两个动词,即“动词+而+动词”,那么“而”表示顺承,也就是说,前面一个动作发生了,后面的动作紧接着就发生了,这时“而”后面就不能停顿,应和后面的动词连读。(3)“而”连接词性相同的两个词语(即两个名词、两个动词、两个形容词),表示并列,可译为“而且”“又”“和”或不译,这时“而”后不应该停顿。(4)“而”表示递进关系,可译为“而且”“并且”“就”或不译,这时“而”后不能停顿。
中国的拱桥的历史可追溯到东汉时期,至今已有一千八百多年。中国的拱桥别具一格,造型优美,曲线圆润,形式多样,世界罕见。拱桥按照建筑材料分为石拱桥、砖拱桥和木拱桥,其中较为常见的是石拱桥。拱桥又分为单拱、双拱、多拱,拱的多少根据河面的宽度而定。多拱桥一般正中间的拱较大,两边的拱略小。根据拱的形状,又分五边、半圆、尖拱、坦拱。桥面上铺板,桥边有栏杆。单孔拱桥的拱形呈抛物线的形状,如北京颐和园的汉白玉石桥玉带桥。多孔拱桥适于跨度较大的宽广水面,常见的多为三、五、七孔,以奇数为多,偶数较少。当多孔拱桥某个孔的主拱受荷时,能通过桥墩的变形或拱上结构的作用把荷载由近及远地传递到其他孔主拱上去,这样的拱桥称为连续拱桥,简称“联拱”。如建于唐代元和年间的古桥苏州宝带桥,桥下共有53个孔相连,桥孔之多,结构之精巧,为中外建桥史上所罕见。
3.归纳主旨本文通过描写范进参加乡试中了举人一事,运用夸张的手法刻画了他为科举考试喜极而疯的形象,用岳丈在范进中举前后的极其鲜明的肢体动作和言语表情,以及中举后邻居对他的前呼后拥和乡绅赠屋等行为,刻画了一个趋炎附势、热衷仕途、好官名利禄的封建知识分子形象,并且谴责了世态炎凉的可耻的社会风气,对当时的社会及其阴暗面进行了辛辣的讽刺。【设计意图】本板块研读品析了文本中的若干次要人物,引导学生理解次要人物的作用,体会本文侧面烘托的写法,揭示社会环境,点明范进悲剧的必然性,进一步挖掘本文的主旨,使学生理解文本深刻的现实意义。结束语:范进,一个让人啼笑皆非的人物,他卑微可怜,热衷科举,丑态百出。文章塑造这个下层知识分子的典型形象,深刻揭露并辛辣地讽刺了封建科举制度,揭露了封建科举制度的腐朽及其对读书人的腐蚀和毒害。如今,科举制度早已被废除,我们有着公平的人才选拔方式,希望同学们可以珍惜每一个机会,好好努力,实现自己的理想抱负。【板书设计】
阅读下面这首宋诗,完成下面小题。插秧歌杨万里田夫抛秧田妇接,小儿拔秧大儿插。笠是兜鍪①蓑是甲,雨从头上湿到胛②。唤渠③朝餐歇半霎,低头折腰只不答:“秧根未牢莳未匝④,照管鹅儿与雏鸭。”【注】①兜鉴:古代战士戴的头盔。②胛:肩胛。③渠:他。④莳未匝:插秧没有完成。
孔子认为教育是“兴于诗”“立于礼”“成于乐”,其中就包含着对美育的重视。今天,我们用“中国梦”来激励人心,一定意义上说就是全民族的“兴于诗”;加强制度建设、强调制度自信,一定意义上说也就是新时代的“立于礼”;“成于乐”的“乐”不仅是音乐之“乐”,快乐之“乐”,而且是在道德的普遍高尚,活力的竞相迸发,精神的昂扬向上,人民对美好生活的追求中不断实现的“天下尽欢颜”之“乐”。从古至今,先贤们对于美育的思考从未止步,这些思想结晶在今天仍具有现实意义,社会主义文化大发展大繁荣来自民间、来自大变革的时代,我们正在大踏步迈向现代化,尤其需要加强美育。
1、负责天猫、京东平台的系列软件的客户咨询、回访、复购方案,规划客服话术和流程方案2套,3个月超额完成销售任务200万2、整理日常客户常见问题,用EXCEL数据透视表制作可视化仪表盘,直观反映客户问题和反馈3、协助产品经理的新产品的数据筛选和竞品分析,跟踪物流订单状态,反馈率达到100%
尊敬的各位老师、亲爱的同学们:早上好!我今天高中新学期国旗下讲话稿的题目是:革命传统精神代代相传“孩子们,喜欢过生日吗?”“因为生日有小礼物,是吗?”“喜欢过节吗?”“因为过节有压岁钱,是吗?”现在社会发展了,生活水平提高了.你们的生活也非常优越,甚至有些同学不用等到过生日,过节,平时就有属于自己的零花钱,但是对于过去的艰苦生活,你们了解吗?同学们,抬头看看用战士们的鲜血染成的五星红旗吧!透过鲜红的五星红旗,你是否又看到了在军阀铡刀前毫无惧色的刘胡兰;你是否又感受到了江姐在敌人酷刑下那撕心裂肺的痛楚;你是否又听到了英雄“为了胜利,向我开炮!”的豪迈呐喊。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。