准备 1.每组一套l~5的数字卡片。让幼儿自愿结合,每组5人,要高矮不同。 2.周围环境中有适于幼儿按大小排序的物体。每人一套l~5的数字卡片。 过程 活动(一)小朋友排队编号 1.排队编号。请幼儿从矮到高排队编号。教师交代:每组幼儿从矮到高排队后,报数编号,每人按编号领取相应的数字卡片。幼儿分组排队编号并互相交流,说一说:“自己这队小朋友是怎么排的队?自己排在第几?其他人排在第几?” 2.从高到矮排队编号,方法同上。 3.幼儿讨论。教师提问:“两次排队有什么不同?你都排在第几个?为什么?如:从矮到高排,明明排第1,从高到矮排,明明排第5。明明两次排队位置不同,这是为什么?”
活动设计:游戏“猜一猜”活动准备:1.卡纸32张,大小各一对的图形(圆、三角形、正方形、长方形)、动物图片各一对。 2.卡纸16张,红色6张,黄、绿色各5张。(2份) 活动过程:(一) 介绍游戏规则和玩法: (将幼儿分成两队,把16张卡片按照横4张, 竖4张放好。图片朝下) 我们来玩个“猜一猜”游戏,怎么玩呢?我这儿有些大小不同、形状不同的图形,我依次翻,比如:我翻第一张是个苹果,记住这个位置上是个苹果,然后我把它关掉继续翻,如果你看到有张卡片是你前面看到过的,可以站起来告诉我“它有朋友了”并把它的朋友找出来,找对了,就给这队奖励,最后比比两队谁的奖励多就赢了。(教师依次翻卡片)
2,学习用数字表示物体的数量。二,活动准备:橘子园背景图;幼儿操作材料。一,活动过程:(一)认识数字31,出示果园图:今天我们去参观橘子园。问:你看到了什么?有几棵橘子树?幼儿随意观察图片,(互相交流讨论。)
2、知道2个半圆形合起来是1个圆形。3、让幼儿能不受图形的颜色、摆放位置的干扰准确地找出半圆形。活动准备:1、故事头饰2、大量半圆形、图形机器人1张、半圆形拼图1张、图片卡3张活动过程:一、 师生共同表演。1、表演活动。2、故事后:老师:“哎,狐狸,狐——狸。”(狐狸不回头并走出门口)师问:“狐狸干什么呢?(拿不到奖品)为什么狐狸拿不到奖品呢?它的奖券哪里来?……(引导幼儿说出故事的内容)小结:原来圆形的奖券给狐狸从中间撕开变成了2个半圆形。二、 幼儿进行故事表演。请2位幼儿分别扮演狐狸和小松鼠,老师当山羊进行表演。故事表演到最后,山羊对狐狸说:“狐狸,你别急着走,想拿到奖品去跟小松鼠商量一下吧,想想办法?小结:两个半圆形合起来变成一个圆形。
2.引导幼儿积极地与材料互动,培养良好的操作习惯。3.让幼儿体验数学活动的乐趣。活动准备:学具:空塑料瓶若干,黄豆若干,1-7不同数量的实物纸条,1-6的数字一组一份。教 具:1-6的数字卡、1-6的加点卡、动物图卡、大瓶子、背景图、头饰(火车头)、磁带。活动过程:1、以开火车游戏激发幼儿活动的兴趣。老师拿点子、数卡、动物图卡和孩子们进行问答游戏。师:嘿嘿,我的火车几点开?(师随机出示6以内的点卡、数卡)幼:嘿嘿,我的火车几点开。师:嘿嘿,来了几位小客人?(出示动物卡片)幼:嘿嘿,来了几位小客人。(反复进行几次)
为了进一步让孩子们去探索、发现花生的秘密,因此我预设了本次“剥花生”的活动。目的让幼儿在轻松愉快的活动氛围中,尝试学习用数字、符号来记录花生的数量,感知发现花生果里花生仁数量的不同。老师根据幼儿能力的不同,提出了不同层次的操作要求,使每个幼儿都能在原有的基础上得到提升。通过活动更让幼儿感受到劳动的乐趣,并与同伴共同分享成功的快乐。 活动目标:1、感知花生的特征,知道花生中花生仁的数量是不同的。2、学习用数字、符号记录花生的数量。3、尝试有计划、有条理地进行多次剥花生、做记录的活动。
2、发展幼儿观察比较、积极思维及动手操作的能力。二、重点与难点: 用语言进行多维的命名。三、活动准备: 教师:大转盘一个,图形操作材料一套。 幼儿:人手一份图形操作材料。四、活动过程: (一)、初次尝试游戏“图形宝宝分家” 1、观察分类材料:看看盘子里有些什么?(有许多图形宝宝) 师:今天老师要和你们来玩一个“分家家”的游戏。 2、交代游戏名称与规则: 师:图形的家在哪里?(处示盘子)分成几家?(两家) 师:分的时候有要求,把相同的宝宝放一家,等一会儿把老师给你的图形宝宝分完,分好了取个名字记在心里,待会儿告诉老师。 3、幼儿操作“给图形宝宝分家”。 4、讨论:你们是怎么分的? (请几位幼儿走上来,师帮其操作结果贴出来)和他一样的有没有? 小结:分家家,可以根据图形的颜色来分成两家,可以根据形状分成两家,还可以根据大小分成两家。你们还想再试一次吗? (二)、再次尝试: 1、要求:等一会儿分家家的时候要求不一样了,再取两个好听的名字,要和现在的名字不一样。 2、幼儿操作提示:第一次怎么分的,第二次要分的不一样。 3、讨论:第一次怎么分的,第二次怎么分的?(请1-2名幼儿) 请幼儿和旁边的幼儿相互讲讲自己分的结果。
活动目标: 1.尝试按数取物设计虫子。2.能与同伴大胆交流自己的感受。3.乐于操作,体验创作的乐趣活动准备: 1、知识经验准备: 会操作电脑进行简单游戏、有过创作丑丑虫的经验。2、物质材料准备: 每人一张画有虫子外轮廓的画纸、带橡皮擦的铅笔每人一支、五官图片各一张。3、环境准备: 用幼儿自制的丑丑虫装饰虫子王国。
活动准备: 各种图形片,记录纸、笔。活动过程:1、找图形(把各种颜色、形状不同、大小不同的图形片放在一起) (1)一组拿红色正方形,第二组拿绿色长方形,第三组黄 色三角形,第四组蓝色圆形,第五组红色梯形,第六组绿半圆形,看看哪组拿得又对又快? (2)请每组幼儿分别拿5个红圆,6个黄正方形,8个绿梯 形、7个蓝三角、4个红半圆。每组一个幼儿在按要求拿的时候,其他幼儿在该幼儿拿好后要帮他数一数,看他数得对不对?(幼儿积极性很高,动作较快,也有一个组总是在最后,可组里的成员都在帮忙,帮着找图片,帮着数图片。) (这样的安排主要是考虑本班有这学期新来的幼儿,有的幼儿照着图形会找出同样的图形来,但如果老师叫他自己拿一个图形来,可能要找半天,特别是长方形和正方形会混洧,梯形也不能很快找出来。通过这两个操作活动,一是帮助幼儿复习图形,二是帮助幼儿复习正确地数实物。)
活动准备各种图形片,记录纸、笔。活动过程1、找图形(把各种颜色、形状不同、大小不同的图形片放在一起)(1)一组拿红色正方形,第二组拿绿色长方形,第三组黄色三角形,第四组蓝色圆形,第五组红色梯形,第六组绿半圆形,看看哪组拿得又对又快?(2)请每组幼儿分别拿5个红圆,6个黄正方形,8个绿梯形、7个蓝三角、4个红半圆。每组一个幼儿在按要求拿的时候,其他幼儿在该幼儿拿好后要帮他数一数,看他数得对不对?(幼儿积极性很高,动作较快,也有一个组总是在最后,可组里的成员都在帮忙,帮着找图片,帮着数图片。)(这样的安排主要是考虑本班有这学期新来的幼儿,有的幼儿照着图形会找出同样的图形来,但如果老师叫他自己拿一个图形来,可能要找半天,特别是长方形和正方形会混洧,梯形也不能很快找出来。通过这两个操作活动,一是帮助幼儿复习图形,二是帮助幼儿复习正确地数实物。)2、拼一拼,说一说,记一记。教师为幼儿提供图形片,老师说一个东西,让幼儿来拼,拼好后说一说你是怎么拼的?每种图形用了几个,记录下来。(1)请幼儿拼一个小人。我在巡视的时候,有个叫王志鹏的孩子对我说:“老师我拼了一个女的。”我当时只是看了一下,随口说了一声“不错”,但心想:为什么是女的?随后又去看其他幼儿拼的情况,这时由于受王志鹏小朋友的启发,我注意看其他孩子的,发现了孩子们拼的小人各有不同,全班只有几个孩子和别人拼的是一样的,其他都不相同。拼好后,我就先请王志鹏说一说,他是怎么拼的?王志鹏说:“我用圆形拼了这个女孩子的头,用正方形拼了她的身体,用长方形拼了她的手,用梯形拼了她的裙子……”张洁说:“我也拼了一个女孩子,是圆形拼了她的头,三角形拼了她的手和身体,梯形拼了她的裙子,腿被裙子挡住了。”也有好多是拼的女孩子,但他们不是体现在裙子上,而是体现在头上,如赵磊用两个半圆拼女孩子的辫子,冠晔是用两个圆拼了辫子……(就拼一个小人,幼儿就用不同的图形拼出了不同的女孩子而且每个孩子都能把自己拼的过程,用自己的语言表述出来。如果孩子不说给你听,你可能粗看一下还不能明白,但经孩子这么一讲解,当时真是恍然大悟,正如瑞吉欧所说:孩子有一百种语言,一百双手,一百个念头,一百种思考、游戏、说话的方式。)
二、重点和难点 让幼儿利用一一对应的方法发现两个物体集合之间的数量关系。 说明 一一对应是比较物休的集合是否相等的最简便、最直接的方式。通过一一对应,不仅可以比较出两个集合之间量的大小,更重要的是还可以发现相等关系,这是幼儿数概念产生的一个关键性步骤。因此,让幼儿在对材料的操作摆弄中自己“发明”一一对应的方法,并通过一一对应的方法去发现两个物体集合之间多、少和等量关系是至关重要的。 三、材料和环境创设 1.材料:诱发对应性材料--碗和调羹、杯子和杯盖、娃娃和帽子、小兔和青菜、……。自发对应性材料--雪花片和木珠、红积木和绿积木、苹果和香蕉、汽车和飞机等等。以上材料可用实物,也可用图片。 2.环境创设:将以上材料按难易程度编号放暨在数学活动区内供幼儿操作摆弄。
由于题目较简单,所以学生分析解答时很有信心,且正确率也比较高,同时也进一步体会到了借助“线段图”分析行程问题的优越性.六、归纳总结:活动内容:学生归纳总结本节课所学知识:1.会借线段图分析行程问题.2.各种行程问题中的规律及等量关系.同向追及问题:①同时不同地——甲路程+路程差=乙路程; 甲时间=乙时间.②同地不同时——甲时间+时间差=乙时间; 甲路程=乙路程.相向的相遇问题:甲路程+乙路程=总路程; 甲时间=乙时间.目的:强调本课的重点内容是要学会借线段图来分析行程问题,并能掌握各种行程问题中的规律及等量关系.引导学生自己对所学知识和思想方法进行归纳和总结,从而形成自己对数学知识的理解和解决问题的方法策略.
解:(1)设x分钟后两人第一次相遇,由题意,得360x-240x=400.解得x=103.(103×360+103×240)÷400=5(圈).答:两人一共跑了5圈.(2)设x分钟后两人第一次相遇,由题意,得360x+240x=400.解得x=23(分钟)=40(秒).答:40秒后两人第一次相遇.方法总结:环形问题中的相等关系:两个人同地背向而行:相遇问题(首次相遇),甲的行程+乙的行程=一圈周长;两个人同地同向而行:追及问题(首次追上),甲的行程-乙的行程=一圈周长.三、板书设计追赶小明→行程问题→相遇问题追及问题环形问题教学过程中,通过对开放性问题的探讨与交流,体验生活中数学的应用与价值,感受数学与人类生活的密切联系,激发学生学习数学的兴趣,培养学生的创新意识、团队精神和克服困难的勇气.
(1) 这28天中属于“重度染污”、“中度污染”、“轻度污染”、“良”和“优”的天数各有几天?出现的频率各是多少?请用一张统计表来表示;(3) 从你作的统计图表中,你得到哪些结论?说说你的理由.(三)课堂小结:本节课学习了用统计来直观来表示数据,并从统计图中发现数据间的联系。整理数据——制统计表1、从资料给出的许多数据中选取相关数据进行整理;2、标目分成横、纵两种(允许不同分法);3、把数据放入相应位置。为了更清晰地用统计表展示与描绘数据,统计表必须有规范的结构:标题(统计表的名称)标目(如“国家”、“届数”…)数据、必要的说明(数据的单位、制表日期等)折线统计图的步骤:(1)写出统计图名称;(2)画出横、纵两条互相垂直的数轴(有时不画箭头),分别表示两个标目的数据;(3)根据横、纵各个方向上的各对对应的标目数据画点;(4)用线段把每相邻两点连接起来。
(三)学以致用,巩固新知为巩固本节的教学重点我再次给出三道问题: 1)绝对值是7的数有几个?各是什么?有没有绝对值是-2的数?2)绝对值是0的数有几个?各是什么? 3)绝对值小于3的整数一共有多少个?先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。(四)总结归纳,知识升华小结时我也将充分发挥学生学习的主动性,发挥教师在教学的启发引导作用,和学生一起合作把本节课所学的内容做一个小结。(五)布置作业,拓展新知布置作业不是目的,目的是使学生能够更好地掌握并运用本节课的内容。所以我会布置这样一个作业:请学生回家在父母的帮助下,找出南方和北方各三个城市的温度,并比较这些温度的大小,并写出每个温度的绝对值进行比较
最后我引导学生观察自己手中的量角器引导学生在测量的时候有时用度的单位还不够就必须用到比度还小的单位分和秒,进而明白度分秒之间的转换关系,并且引导学生对比和度分秒进制一样的还有时间。从而进入到例题2的讲解。接下来让学生通过随堂练习来加强和巩固本节课的内容。提高学生对本节课知识的系统综合。(四)归纳总结。小结主要由学生完成,我作出适当的补充。最后总结角的比较表方法及估测和某些角之间的等量关系的书写基本的几何语句并能根据语句画出几何图形。(五)布置作业通过作业及时了解学生学习效果,调整教学安排。使学生通过独立思考,自我评价学习效果;学会反思,发现问题;并试着通过阅读教材、查找资料或与同伴交流解决问题。
通过有针对性的练习,巩固所学,拓展知识,形成应用能力。本环节主要是针对学生对本节内容的掌握程度进行检测反馈。学生在经过自学、置疑、解疑、教师点拨后作一套本节的检测题。做完后,教师或学生给出答案,并给予简单解析。教师对检测成绩做以简单的统计,了解本节课的学习效果。检测题必须精心设计与安排,因为学生在做经过精心安排的检测题时,不仅在积极地掌握数学知识,而且能获得进行创造性思维的能力。要充分发挥检测题的功能,设计检测题时应由浅入深、难易适当、逐步提高、突出重点与关键、注意题型的搭配。在试题设计上,应将知识、素质、能力的考查统一起来,既有知识性、分析性题目,又有应用性、直觉形象性题目。提高创新性题型的比重和难度,少问“是什么”,多问“为什么”、“对某些问题,你以为如何”等,增强答案的发散性。
【类型一】 逆用积的乘方进行简便运算计算:(23)2014×(32)2015.解析:将(32)2015转化为(32)2014×32,再逆用积的乘方公式进行计算.解:原式=(23)2014×(32)2014×32=(23×32)2014×32=32.方法总结:对公式an·bn=(ab)n要灵活运用,对于不符合公式的形式,要通过恒等变形转化为公式的形式,运用此公式可进行简便运算.【类型二】 逆用积的乘方比较数的大小试比较大小:213×310与210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,又∵23<32,∴213×310<210×312.方法总结:利用积的乘方,转化成同底数的同指数幂是解答此类问题的关键.三、板书设计1.积的乘方法则:积的乘方等于各因式乘方的积.即(ab)n=anbn(n是正整数).2.积的乘方的运用在本节的教学过程中教师可以采用与前面相同的方式展开教学.教师在讲解积的乘方公式的应用时,再补充讲解积的乘方公式的逆运算:an·bn=(ab)n,同时教师为了提高学生的运算速度和应用能力,也可以补充讲解:当n为奇数时,(-a)n=-an(n为正整数);当n为偶数时,(-a)n=an(n为正整数)
方法总结:本题考查了幂的乘方的逆用及同底数幂的乘法,整体代入求解也比较关键.【类型三】 逆用幂的乘方结合方程思想求值已知221=8y+1,9y=3x-9,则代数式13x+12y的值为________.解析:由221=8y+1,9y=3x-9得221=23(y+1),32y=3x-9,则21=3(y+1),2y=x-9,解得x=21,y=6,故代数式13x+12y=7+3=10.故答案为10.方法总结:根据幂的乘方的逆运算进行转化得到x和y的方程组,求出x、y,再计算代数式.三、板书设计1.幂的乘方法则:幂的乘方,底数不变,指数相乘.即(am)n=amn(m,n都是正整数).2.幂的乘方的运用幂的乘方公式的探究方式和前节类似,因此在教学中可以利用该优势展开教学,在探究过程中可以进一步发挥学生的主动性,尽可能地让学生在已有知识的基础上,通过自主探究,获得幂的乘方运算的感性认识,进而理解运算法则
解析:(1)根据表中信息,用优等品频数m除以抽取的篮球数n即可;(2)根据表中数据,优等品频率为0.94,0.95,0.93,0.94,0.94,稳定在0.94左右,即可估计这批篮球优等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)这批篮球优等品的概率估计值是0.94.三、板书设计1.频率及其稳定性:在大量重复试验的情况下,事件的频率会呈现稳定性,即频率会在一个常数附近摆动.随着试验次数的增加,摆动的幅度有越来越小的趋势.2.用频率估计概率:一般地,在大量重复实验下,随机事件A发生的频率会稳定到某一个常数p,于是,我们用p这个常数表示随机事件A发生的概率,即P(A)=p.教学过程中,学生通过对比频率与概率的区别,体会到两者间的联系,从而运用其解决实际生活中遇到的问题,使学生感受到数学与生活的紧密联系