在教学学习新知一时,通过让学生动手掷硬币活动,使学生先猜想再验证,学生就会明白在掷硬币时,可能正面朝上,也可能反面朝上,哪面朝上具有不确定性。再通过对三个问题的分析,结果分别有几种不同情况,最后确定可能性。通过对日常生活中不同事件的分析,学生就会得出许多事件的结果是不可预知的,具有不确定性。学习新知一通过设计一系列问题引导学生对不确定性问题的理解和掌握。学习新知二通过先让学生分析、讨论交流,再连一连,就知道第(1)个盒子摸到的结果只有一种情况,一定是黄球;第(2)个盒子摸到的结果也只有一种情况,一定是白球,所以不可能是黄球;第(3)个盒子摸到的结果有两种情况,可能是黄球,也可能是白球,所以只能连“可能是黄球”,这样学生就会用“一定”“可能”“不可能”等词语描述事件发生的情况。
这种舞蹈就被称为塔兰泰拉舞。学生会根据这个小故事想象舞蹈应该有怎样的特点,动作剧烈、节奏急促、速度越来越快等等.这些特点让他们自己总结出来会比教师生硬的讲解更容易被接受(四)、再次聆听乐曲的第二部分,感受塔兰泰拉舞曲风格特点初步了解塔兰泰拉舞曲后再让他们聆听乐曲的第二部分,想象一下芭蕾舞演员随着这样的音乐会做怎样的动作.再完整欣赏这段《天鹅湖》第三幕中意大利女郎所跳的舞蹈视频,引导学生关注舞蹈动作的特点,加深对塔兰泰拉舞曲风格的感受.(五)、拓展延伸为了开阔学生的视野、对教材进一步拓展,完整欣赏后结合《天鹅湖》简介芭蕾舞的特征,并由它的起源引出意大利相关的音乐文化-----小提琴的制作工艺及价值等,使学生初步了解意大利音乐文化对欧洲艺术发展的影响。最后,在小提琴版《那不勒斯舞曲》的伴随下,幻灯播放意大利那不勒斯的美丽风光结束本课教学.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
师生互动,课堂小结1.画频数分布直方图的一般步骤:(1)计算最大值最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.2.直方图与条形图的区别:直方图的各长方形通常是连续排列中间没有空隙,长方形的宽表示各组距,高表示频数,它反映的是数据的分布情况;条形图一般不连续排列,中间一般有间隙,长方形的高表示频数,宽没有什么特殊的意义,只表示数据的一种类别.3.频数折线图的各点的位置:起点是向前多取一个组距,在横轴上取这个组距的中点即可,中间各点取各小长方形顶部宽的中点(组中值),末点是向后多取一个组距,在横轴上取这一个组距的中点即可.
一、合同项目和目的甲、乙双方本着相互信任、真诚合作的原则,经双方友好协商,就乙方为甲方提淘宝直播服务达成一致意见,为确保服务到位、职责明确,根据合同法及其它法律、法规,甲、乙双方特签订本合同(本合同包含附件A、附件B)。二、 服务内容 1、乙方同意向甲方提供附于本合同并作为本合同一部分的附件A所列的淘宝直播服务。服务的内容、时限、衡量成果的标准见附件A。 2、如果乙方在工作中因自身过错而发生任何错误或遗漏,乙方应无条件更正,且不另外收费,并对因此而对甲方造成的损失承担赔偿责任,赔偿以附件A所载明的该项服务内容对应之服务费为限。若因甲方原因造成工作的延误,将由甲方承担相应的损失。3、甲、乙双方合作期限自2019年9 月29 日起至2020年9月28日止。三、直播服务费用支付 1、经双方协商商家需通过银行转账的形式支付直播金额为( )元人民币。商家淘宝客后台需设置定向计划的佣金提点,佣金设置为 即可。如直播结束后台读取出现低佣现象,商家须按照合作佣金进行补差(例合作佣金为30%,后台订单读取3%则需按照订单补差27%)补差时间为直播结束后3-5个工作日,经双方核对订单后(以乙方后台订单为主)佣金补差费用通过V任务补差至乙方账户。2、商家需缴纳保证金 ( ) 元人民币,保证金是为了提高粉丝体验,商家给消费者一定金额的责任担保,主播对产品介绍对商家品牌提升而设立,有效的帮助商家提升直播间转化,保证金有效期时间为1年,合作期间不予退还,如后续不考虑合作可申请退款。保证金打款至乙方银行账户:xxxxxxxxxxxxxx工商 xx艳 广州xx支行3、本费用结构仅限于附件A中列明的工作。如果甲方要求扩大项目范围,或因甲方改变已经议定的项目内容导致乙方需重复进行项目步骤,乙方将需要重新评估上述费用结构。
演讲稿频道《国旗下的讲话稿范文:永不退色的阳光光影》,希望大家喜欢。亲爱的小杨杨、大阳阳:上周一下午的教职工大会上,全体教职工兴致勃勃的观看了杨小庆六一活动文化视频《阳光六一》。片中小杨杨、大阳阳、家长一起快乐联欢的场景,令人开心不已。平日里不苟言笑的大阳阳如孩童般露出灿烂的笑容。全班参与的文艺表演,让每个小杨杨有了一次上台展示自己的机会。受绵阳团市委邀请的一元爱心童缘杨家家园的小杨杨在绵阳外国语学校参与的“童心圆梦,牵手成长”爱心联谊活动,让全体大阳阳为小杨杨感到自豪。“用我们的爱心,让小杨杨的梦想不停的转动”是大阳阳欣赏完视频之后的真诚心声。大阳阳谢钢老师全程摄像,将阳光校园里的欢快场景一一记录下来。当精彩被永恒的镌刻于光影之中时,我们的共同记忆便不会退色。周二,杨小XX届毕业生迎来小学阶段最后一次考试——小学终结性质量检测。考场内,小杨杨专心致志的答题,为了证明,为了回报。四堂考试,在良好的考试秩序中顺利完成。下午4点50分,随着最后一堂《科学》考试结束铃声的响起,小杨杨在小学阶段做的最后一张试卷,终于能被漂漂亮亮的交到老师的手中。
绵阳市涪城区杨家镇台达阳光小学校长陈正亲爱的小杨杨、大阳阳:上周一下午的教职工大会上,全体教职工兴致勃勃的观看了杨小庆六一活动文化视频《阳光六一》。片中小杨杨、大阳阳、家长一起快乐联欢的场景,令人开心不已。平日里不苟言笑的大阳阳如孩童般露出灿烂的笑容。全班参与的文艺表演,让每个小杨杨有了一次上台展示自己的机会。受绵阳团市委邀请的一元爱心童缘杨家家园的小杨杨在绵阳外国语学校参与的“童心圆梦,牵手成长”爱心联谊活动,让全体大阳阳为小杨杨感到自豪。“用我们的爱心,让小杨杨的梦想不停的转动”是大阳阳欣赏完视频之后的真诚心声。大阳阳谢钢老师全程摄像,将阳光校园里的欢快场景一一记录下来。当精彩被永恒的镌刻于光影之中时,我们的共同记忆便不会退色。周二,杨小XX届毕业生迎来小学阶段最后一次考试——小学终结性质量检测。考场内,小杨杨专心致志的答题,为了证明,为了回报。四堂考试,在良好的考试秩序中顺利完成。下午4点50分,随着最后一堂《科学》考试结束铃声的响起,小杨杨在小学阶段做的最后一张试卷,终于能被漂漂亮亮的交到老师的手中。
每一朵花都有灿烂的理由从生命萌动到呱呱坠地,从牙牙学语到坠坠学步,从懵懵懂懂到成长成熟,也许我们有着不同的身份,也许我们生活在不同的环境,也许我们有着不同的追求,可是那有什么关系,我们知道,每一朵花都有灿烂的理由。煤矿工人韩三明,18岁就开始挖煤生涯。他皮肤黝黑,长相普通,因为在影片《三峡好人》里扮演煤矿工人而获得智利国际电影节最佳男演员奖。有人说,这回老韩出名了。可他却说,我并不是演员那块料,还是老老实实挖我们的煤,一样能养家糊口。韩三明在纷繁之中认清自己,让生命之花绽放了属于自己的绚丽。中国达人秀冠军刘伟,在小时候意外中失去了双臂,却仍坚持自己心中的梦想,在19岁时学习弹钢琴,不如手指的脚趾常常在不间断的练习中抽筋。。。以想象的毅力,坚持了下来他用脚趾弹奏生命的赞歌。
每一朵花都有灿烂的理由从生命萌动到呱呱坠地,从牙牙学语到坠坠学步,从懵懵懂懂到成长成熟,也许我们有着不同的身份,也许我们生活在不同的环境,也许我们有着不同的追求,可是那有什么关系,我们知道,每一朵花都有灿烂的理由。煤矿工人韩三明,18岁就开始挖煤生涯。他皮肤黝黑,长相普通,因为在影片《三峡好人》里扮演煤矿工人而获得智利国际电影节最佳男演员奖。有人说,这回老韩出名了。可他却说,我并不是演员那块料,还是老老实实挖我们的煤,一样能养家糊口。韩三明在纷繁之中认清自己,让生命之花绽放了属于自己的绚丽。中国达人秀冠军刘伟,在小时候意外中失去了双臂,却仍坚持自己心中的梦想,在19岁时学习弹钢琴,不如手指的脚趾常常在不间断的练习中抽筋。。。以想象的毅力,坚持了下来他用脚趾弹奏生命的赞歌。
课程名称数学课题名称8.2 直线的方程课时2授课日期2016.3任课教师刘娜目标群体14级五高班教学环境教室学习目标知识目标: (1)理解直线的倾角、斜率的概念; (2)掌握直线的倾角、斜率的计算方法. 职业通用能力目标: 正确分析问题的能力 制造业通用能力目标: 正确分析问题的能力学习重点直线的斜率公式的应用.学习难点直线的斜率概念和公式的理解.教法、学法讲授、分析、讨论、引导、提问教学媒体黑板、粉笔
活动四:自主学习,尺规作图先阅读,再尝试作图,思考作图道理,小组讨论,“为什么作图过程中必须以大于1/2AB的长为半径画弧?”同桌演示尺规作图。最后折纸验证,使整个学习过程更加严谨。我将用下面这个课件给学生展示作图过程。再次回顾情境,让学生完成情境中的问题。(三)讲练结合,巩固新知第一个题目是直接运用性质解决问题,比较简单,面向全体学生。我还设计了第二个题目,想训练学生审题的能力。(四)课堂小结在学生们共同归纳总结本节课的过程中,让学生获得数学思考上的提高和感受成功的喜悦并进一步系统地完善本节课的知识。(五)当堂检测为了检测学生学习情况,我设计了当堂检测。第一个题目,让学生学会转化的思想来解决问题;第二个题目练习尺规作图。
1、教材简析“直角的初步认识”这节课出自人教版义务教育课程标准实验教科书数学课本二年级上册第三单元。这单元的内容是角和直角的初步认识,是在学生已经初步认识长方形、正方形和三角形的基础上教学的。“直角的初步认识”是学生初步认识了角,知道角的各部分名称后,在这基础上出现的。教材通过引导学生观察国旗、椅子、双杆上的角,来说明这些角都是直角。然后让学生通过折纸做直角,加深对直角的认识。再借助三角板来说明要判断一个角是不是直角,可以用三角板上的直角来比一比。最后让学生学会用三角板画直角。学好这部分知识,能为今后进一步认识直角以及学习其它几何图形打下牢固的基础。2、教学目标(1)结合生活情境,使学生初步认识直角,会用三角板判断直角和会画直角。(2)通过看一看,比一比,折一折,画一画等教学活动,培养学生的观察能力,判断能力和实践能力。
9.例二:如图,AB∩α=B,A?α, ?a.直线AB与a具有怎样的位置关系?为什么?解:直线AB与a是异面直线。理由如下:若直线AB与a不是异面直线,则它们相交或平行,设它们确定的平面为β,则B∈β, 由于经过点B与直线a有且仅有一个平面α,因此平面平面α与β重合,从而 , 进而A∈α,这与A?α矛盾。所以直线AB与a是异面直线。补充说明:例二告诉我们一种判断异面直线的方法:与一个平面相交的直线和这个平面内不经过交点的直线是异面直线。10. 例3 已知a,b,c是三条直线,如果a与b是异面直线,b与c是异面直线,那么a与c有怎样的位置关系?并画图说明.解: 直线a与直线c的位置关系可以是平行、相交、异面.如图(1)(2)(3).总结:判定两条直线是异面直线的方法(1)定义法:由定义判断两条直线不可能在同一平面内.
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
设计意图这一组习题的设计,让每位学生都参与,通过学生的主动参与,让每一位学生有“用武之地”,深刻体会本节课的重要内容和思想方法,体验学习数学的乐趣,增强学习数学的愿望与信心。4.回顾反思,拓展延伸(教师活动)引导学生进行课堂小结,给出下列提纲,并就学生回答进行点评。(1)通过本节课的学习,你学会了哪些判断直线与圆位置关系的方法?(2)本节课你还有哪些问题?(学生活动)学生发言,互相补充。(教师活动)布置作业(1)书面作业:P70练习8.4.41、2题(2)实践调查:寻找圆与直线的关系在生活中的应用。设计意图通过让学生课本上的作业设置,基于本节课内容和学生的实际,对课后的书面作业分为三个层次,分别安排了基础巩固题、理解题和拓展探究题。使学生完成基本学习任务的同时,在知识拓展时起激学生探究的热情,让每一个不同层次的学生都可以获得成功的喜悦。
解析:(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答;(2)根据线段垂直平分线的性质判断出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中点,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法总结:此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.探究点二:线段垂直平分线的作图如图,某地由于居民增多,要在公路l边增加一个公共汽车站,A,B是路边两个新建小区,这个公共汽车站C建在什么位置,能使两个小区到车站的路程一样长(要求:尺规作图,保留作图痕迹,不写画法)?
∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直线AD垂直平分线段EF.方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.三、板书设计1.线段的垂直平分线的性质定理线段垂直平分线上的点到这条线段两个端点的距离相等.2.线段的垂直平分线的判定定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.