提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

道德与法治八年级上册做守法的公民作业设计

  • 3.15消费与服务演讲稿(国旗下讲话)_

    3.15消费与服务演讲稿(国旗下讲话)_

    各位领导,各位老师,各位同学,大家好:今天是3.15国际消费者权益日,中国消费者协会确定今年的主题为"消费与服务"。所以,我演讲的题目是“消费 服务,我的责任”。著名相声演员王培元曾经讲过这样一个真实的故事:他的一位朋友买了一套沙发,沙发买回家没多久,两个扶手竟然长出了萝卜缨子,扒开一看才明白,扶手竟然是用两根大萝卜做的。这个令人啼笑皆非的真实故事的存在,一方面是一些经营者在利益的驱使下搅乱市场规则,泯灭了服务本质而造成的,另一方面却往往是我们消费者不懂法,不知该如何维护自身权益的一味纵容造成的。那英也曾唱过这样一首歌:“雾里看花,水中望月,你能分辨这变幻莫测的世界。”词作者阎肃曾说这首歌是送给"3.15"的,希望消费者能够借助一双慧眼,将这经济生活中的纷扰看得清清楚楚、明明白白、真真切切!这几年,砸汽车,砸空调的新闻越来越多,殊不知,以损坏产品来引起关注做法直接是错误的,这一砸,痛快了,这一砸,证据也没了,证据都没有了,谈何要厂商赔偿损失呢?

  • 《学会感恩与爱同行》主题班会说课稿

    《学会感恩与爱同行》主题班会说课稿

    爸爸建议说,只要让你快乐的事都值得去感激.蓝蓝想了想对爸爸说,阳台上的茉莉开了,那么香,那么美,这事令她很开心,她要谢谢花开了!9岁的蓝蓝已开始会感激花开了.到了秋天,她就会感激硕果;到了冬天,她还会感激......一、感激无处不在1、蓝蓝才九岁,已经开始会感激花开了.你呢?说说你感激的一切.促进你成长的人、让你快乐的事、一切美好的事物都值得去感激.2、背景音乐《沉醉在风中》有请一位同学上台展示.我感谢....感谢父母给了我生命和无私的爱;感谢老师给了我知识和看世界的眼睛;感谢朋友给了我友谊和支持;感谢书籍,生命因你而多了充实与清新;感谢所有陪伴我的人,你们使我的生命不再孤单;感谢快乐,让我幸福地绽开笑容,在美好生活着;感谢伤痛,让我学会了坚忍,也练就了我释怀生命之起落的本领;感谢鲜花的绽放,绿草的如茵,鸟儿的歌唱,让我拥有了美丽,充满生机的世界;感谢生活所给予我的一切,虽然并不全都是美满和幸福;

  • 人教版高中语文必修3《老人与海》教案2篇

    人教版高中语文必修3《老人与海》教案2篇

    (一)导入[以视频欣赏导入]同学们,刚才欣赏的是大家熟悉、喜欢的电视剧《亮剑》中的精彩片段——李云龙论述什么是“亮剑”精神?同学们听后觉得好不好?牛不牛?“亮剑”精神简单理解就是敢于与强大的敌人(对手)做斗争,无论对手多么强大,都要满腔勇气和信心,永不放弃、永不言败,要敢于亮剑……今天我们一起来学习世界100部著名文学作品之一、美国里程碑式30部文学作品之一的世界名著——海明威的《老人与海》,看看主人公桑提亚哥“硬汉”性格和李云龙“亮剑”精神有么相似的地方。(请同学们翻到课文,课件显示课题《老人与海》)(二)走进作者:请同学们自己谈收集到的有关海明威的资料,然后教师梳理出下列核心内容识记:(课件显示)海明威(1899~1961),美国现代作家,20世纪美国文学史上最耀眼的名字之一。早期作品表现了第一次世界大战青年一代的彷徨情绪,以“迷惘的一代”的代表著称。20世纪末回到美国,写了不小以拳击家、渔民、猎人等为主人公的短篇小说,创造了“硬汉子”性格。

  • 人教版高中语文必修3《老人与海》说课稿2篇

    人教版高中语文必修3《老人与海》说课稿2篇

    3、重要语句的理解“可是一个人并不是生来要给打败的,你尽可把它消灭掉,可就是打不败他。”解析:这是老人第一次回合之后的内心独白,也是此小说的核心精神,充分体现了老人桑地亚哥的生命理念。整句话可以分为两部分来理解,前句告诉我们,人生活在自然与社会当中,必不可少要面临一些坎坷、磨难,这些磨难、坎坷完全可以造成躯体的消灭、消亡,这是人生命的脆弱性。后句,面对挫折,只要保持一种乐观的精神,拥有一颗坚强的心灵,那么,人类执着奋斗的精神将永不磨灭。4、象征主义题目是《老人与海》,而表明上,小说是写一位老人及其在海上的经历,但实际上,老人的形象极具概括性,他已经超越了一个人的存在,而成为了人生的一种象征。老人桑地亚哥就是“硬汉子”的代表,大海则是生命旅途的象征,鲨鱼则是我们行走中的“强物”,厄运的象征。人的一生不可能一帆风顺,不经历风雨,怎能见彩虹,走在人生路途中,不可避免我们都要遇到挫折,被厄运所阻挠,只有经历与“鲨鱼”的较量,才能成为强者,唱出最美的歌。

  • 人教版高中地理选修5防灾与减灾教案

    人教版高中地理选修5防灾与减灾教案

    (一)自然灾害监测系统1.概念:自然灾害监测系统是由国家、区域及地方等各级组织,通过不同平台对自然灾害进行监测和分析的网络系统。2.作用:灾前预警、灾中跟踪、灾后评估以及提出减灾决策方案3.世界和我国灾害监测系统的发展情况①已经形成了遍布世界各地、相互交织的灾害监测和预警网络。②我国已经运用现代科学技术建立起各种自然灾害监测系统(二)遥感技术在自然灾害监测中的作用1.遥感(RS)技术的特点:观测范围广、信息获取量大、获取速度快、实时性好和动态性强等。从空间尺度看,遥感具有全球观测能力,可从多波段、多时相和全天候角度获得全球自然灾害的观测数据;从时间尺度看,在遥感平台上能够对地球进行同步观测,可获得地球表层及其瞬间变化的灾害信息。

  • 关于人道博爱奉献的国旗下的讲话

    关于人道博爱奉献的国旗下的讲话

    同学们:大家好!“人道、博爱、奉献”这是世界红十字精神。以“弘扬人道主义精神,普及卫生急救知识,促进校园文明建设”为宗旨的学校红十字会,伴随着社会的改革,学校的发展,在更多的场合发挥了它应有的积极作用。虽然我们学校的“红十字会”在去年刚刚成立。但我们坚信,爱是人间的真情,“只要人人都献出一点爱,世界将变成美好的明天。”今天国旗下讲话,我想跟同学们讲讲关于人道、博爱与奉献的小故事。战国时期,楚国有个有思想的人叫庄周,后人也叫他庄子。他的思想博大精深,尤其文章写的非常出色。但是,庄子家里很穷,靠织草鞋为生。有一天,他到监河侯家里去借粮食。监河侯说:“好的,不过,且等我收得租税以后,我再借你300两银子,好吗?”庄子听了他的话很气愤,就对监河侯说了下面的一段话:“昨天,我在路上走,看见一条鲫鱼,躺在路上的干车沟里。鲫鱼看见我了,就吆喝:”老公公,我本来是从东海来的,今天不幸落在这个干车沟里,很快就要干死了,给我一桶水就行!求求您了,快救救我吧!”

  • 关于品德是人的第一智慧的第三周国旗下讲话

    关于品德是人的第一智慧的第三周国旗下讲话

    德是人的第一智慧—第三周国旗下讲话各位老师、同学们:大家早晨好!我今天讲话的题目是《品德是人的第一智慧》,侧重阐述品德和智慧的关系,强调我校学生在校期间的品德要求。我们今天培养和选拔人才的标准是德才兼备,但很少有人思考“德”和“才”的关系。可以这样讲,一个人有怎样的品德,就会有怎样的人生理解和目标,而智慧决定的是追求目标的途径和方法。目标决定方法,方法服务于目标。从这个意义上讲,品德是成功人生的前提,是第一位的;智慧是成功人生的必须,从属于品德。翻开一部人类的历史,凡被人们敬仰的伟人,哪一位不是品德高尚的人?毛泽东、孙中山、钱学森、华罗庚、罗斯福、华盛顿、爱因斯坦、哥白尼等等。同学们试想想,如果你走向社会后事业有成,你会选择一位当年缺乏公德的同学合作吗?没有与人良好的合作关系,才高八斗又有何用?高尚的品德不是与生俱来的,他需要我们一点一滴的做好自律,并自觉接受它律。自律的最高境界就是中国儒家文化强调的“慎独”,即一个人独处时也能保持同样的高尚品德境界,而不是没人看见就随手扔垃圾,随性破坏公物或干点什么见不得人的坏事。

  • 大班数学《数的守恒》说课稿

    大班数学《数的守恒》说课稿

    守恒包括数的守恒、长度守恒、液量守恒、物质的量(固体量)守恒、面积守恒、质量守恒、容积守恒等。大班幼儿认知活动的具体形象性和行为的有意性明显发展,能依靠表象进行思维,认知活动的概括性使幼儿对事物的理解增强,但仍显表面化、肤浅化。因此本次活动选择的内容是网络图数守恒中的一个内容6以内数的守恒,旨在让幼儿在游戏中愉快地学习数的守恒,通过自身的操作,初步感知物体位置发生变化,总数不变的数现象。让幼儿在看一看、说一说、玩一玩、摆一摆中理解数的守恒,使幼儿对数的守恒有初步的概念。数的守恒是指物体数目不因物体外部特征和排列形式等的改变而改变,物体的数目与物体的大小、颜色、形状及排列疏密没有关系(评价标准:知道比较两组物体的多少,要以物体的数目来判断)。

  • 关于新型城镇化建设问题的思考的调研报告

    关于新型城镇化建设问题的思考的调研报告

    二、要清醒认识我市城镇化建设中存在的问题  从1993年以来,我市城镇化建设取得巨大成就,城乡面貌发生了翻天覆地的变化,就是我们这些后来者,每当谈到X市城镇化建设都常常引以为豪。今天,我提出要清醒认识我市城镇化建设中存在的问题,就是要求我们要站在新的起点上,承前启后,继往开来,把X市城镇化建设再次掀起新高潮。  第一,规划起点不高。主要体现在四个方面:一是空间发展格局不到位。在生产、生活、生态空间,地上、地下、地面空间,存量、增量、留白空间等三大系统方面统筹不好。二是规划的前瞻性不够。比如,X市2015—20**年的城市规划,20**年前的建设用地规模根本满足不了实际需求;提出的六组团建设规划,规划修编刚结束,其中火车站物流组团就必须考虑重新规划选址的问题。三是特色不突出。我市城镇化建设给人的感觉是在“摊大饼”,在城市空间利用上、建设上、环境上、配套上研究不够,体现不出自己的特色;我市是民族自治市,但在民族文化研究上研究不深,在城镇化建设上看不出更多的民族文化特色;山水生态是我们的优势,但利用不充分,结合不是很理想。四是政府重视不够。由于我们缺少专业知识,工作方法不到位,与规划部门沟通不多,更提不出好的意见,基本上是由规划单位独立操作。同时,由于受资金影响,请不起一流的规划单位,加之他们深入实地少,对市情、县(市)情了解不多,等等。

  • XX-XX学年度上学期运动会动员国旗下讲话稿:驱赶秋日的寒意,点燃运动的热情

    XX-XX学年度上学期运动会动员国旗下讲话稿:驱赶秋日的寒意,点燃运动的热情

    尊敬的老师们、亲爱的同学们,大家早上好,我是高二(3)班的童xx,今天我演讲的题目是“驱赶秋日的寒意,点燃运动的热情”。为了丰富校园文化生活,展示学校教育成果,促进学生德智体美劳全面发展,本周我校将举行秋季运动会。这将是一次展示力与美的盛会,也将是一次体魄与耐力的比拼。运动会是检验学校水平高低的一个标志,也是各个班级、每位同学展示风采的一个舞台。运动会是一个竞技场,优胜劣汰,容不得半点虚假。同一起跑线上,你付出多少汗水,就会有多少回报。没有顽强的拼搏,不会有优异的成果;没有坚定的信心,跑道上不会有你亮丽的身影。体育舞台是人生舞台的一个缩影,鲜花和掌声是献给脚踏实地、顽强拼搏、不畏艰难的人。“重在参与”展现着我们的积极心态,“为班争光”蕴含着我们的集体主义情怀,赛场上人人都是胜利者,结果并不重要智力与体力才是我们追求的目标。运动会不仅可以检验我们的运动水平和班级凝聚力,还可以充分展示我校同学朝气蓬勃的精神面貌。运动会不仅比运动水平运动精神与全校师生对德、智、体全面发展的教育方针的全面理解。

  • 强大的政D是在自我革命中锻造出来的工作总结

    强大的政D是在自我革命中锻造出来的工作总结

    “当前,少数D员、干部自我革命精神淡化,安于现状、得过且过;有的检视问题能力退化,患得患失、讳疾忌医;有的批评能力弱化,明哲保身、装聋作哑;有的骄奢腐化,目中无纪甚至顶风违纪,违反D的纪律和中央八项规定精神问题屡禁不止。”针对问题,强调指出,要荡涤一切附着在D肌体上的肮脏东西,非常必要,非常及时,非常有针对性,有着非常重要的历史意义。凡是过往,皆为序章。初心易得,始终难守。我们要依照所强调的,全D同志必须始终保持崇高的革命理想和旺盛的革命斗志,用好批评和自我批评这个锐利武器,驰而不息抓好正风肃纪反腐,不断增强D自我净化、自我完善、自我革新、自我提高的能力,坚决同一切可能动摇D的根基、阻碍D的事业的现象作斗争,荡涤一切附着在D肌体上的肮脏东西,把我们D建设得更加坚强有力。不断深化D的自我革命,持续推动全D不忘初心、牢记使命,让我们的D成为永远打不倒、压不垮的马克思主义政D。

  • 用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.

  • 高教版中职数学基础模块下册:8.3《两条直线的位置关系》优秀教案设计

    高教版中职数学基础模块下册:8.3《两条直线的位置关系》优秀教案设计

    教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 8.3 两条直线的位置关系(一) *创设情境 兴趣导入 【知识回顾】 我们知道,平面内两条直线的位置关系有三种:平行、相交、重合.并且知道,两条直线都与第三条直线相交时,“同位角相等”是“这两条直线平行”的充要条件. 【问题】 两条直线平行,它们的斜率之间存在什么联系呢? 介绍 质疑 引导 分析 了解 思考 启发 学生思考*动脑思考 探索新知 【新知识】 当两条直线、的斜率都存在且都不为0时(如图8-11(1)),如果直线平行于直线,那么这两条直线与x轴相交的同位角相等,即直线的倾角相等,故两条直线的斜率相等;反过来,如果直线的斜率相等,那么这两条直线的倾角相等,即两条直线与x轴相交的同位角相等,故两直线平行. 当直线、的斜率都是0时(如图8-11(2)),两条直线都与x轴平行,所以//. 当两条直线、的斜率都不存在时(如图8-11(3)),直线与直线都与x轴垂直,所以直线// 直线. 显然,当直线、的斜率都存在但不相等或一条直线的斜率存在而另一条直线的斜率不存在时,两条直线相交. 由上面的讨论知,当直线、的斜率都存在时,设,,则 两个方程的系数关系两条直线的位置关系相交平行重合 当两条直线的斜率都存在时,就可以利用两条直线的斜率及直线在y轴上的截距,来判断两直线的位置关系. 判断两条直线平行的一般步骤是: (1) 判断两条直线的斜率是否存在,若都不存在,则平行;若只有一个不存在,则相交. (2) 若两条直线的斜率都存在,将它们都化成斜截式方程,若斜率不相等,则相交; (3) 若斜率相等,比较两条直线的纵截距,相等则重合,不相等则平行. 讲解 说明 引领 分析 仔细 分析 讲解 关键 词语 思考 理解 思考 理解 带领 学生 分析 引导 式启 发学 生得 出结 果

  • 空间向量及其运算的坐标表示教学设计人教A版高中数学选择性必修第一册

    空间向量及其运算的坐标表示教学设计人教A版高中数学选择性必修第一册

    一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.

  • 双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图

  • 抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,

  • 双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为

  • 椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.

  • 椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.

上一页123...180181182183184185186187188189190191下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!