探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
一个世纪前,一位了不起的美国人签署了奴隶解放宣言,而我们今天就站在他的塑像下面。对于千千万万身受不公正待遇之苦的黑奴来说,这份划时代的文件,是一座光芒万丈的希望灯塔,是结束他们被束缚之漫漫长夜的快乐黎明。我有一个梦,有朝一日在乔治亚州的丘陵地带,奴隶的后代与奴隶主的后代,将能够兄弟般地相处。我有一个梦,有朝一日甚至密西西比州,这个充满不平与压迫的州,将转化成一片自由与公正的绿洲。我有一个梦,我的四个孩子,有朝一日将可以生活在这样一个国度里:在此人们不是根据他们的肤色,而是根据他们的品行来衡量他们。我今天有一个梦!我有一个梦,有朝一日在阿拉巴马州,尽管目前有许多恶毒的种族主义者,尽管州长叫嚷着要与联邦政府对抗,有朝一日在阿拉巴马州,黑人孩子与白人孩子将会像兄弟姊妹那样亲密无间。
课件出示:(1)养成爱听、多听、会听的好习惯,比如多听新闻、听演讲、听别人说话等,从而形成语言智慧的丰富源泉。(2)多看电影、书报、电视访谈节目,还可以看现实生活中各种生动而感人的场景,为说积累素材。(3)多背诗词、格言、谚语等,能在情感上受到滋润、熏陶,慢慢形成自己正确而生动的语言。(4)多说才能使你的语言表达能力迅速提高。3.课后作业师:课后,各学习小组可以从课本P20“口语实践”六个话题中选择一两个,讲故事给你的同桌听。结束语:良言一句三冬暖,恶语伤人六月寒。讲述不仅仅是一门学问,更是一门艺术。讲述能力的提高仅仅通过一节课的学习是不够的,还希望同学们在日常的学习生活中多沟通,多交流。通过练习,你定能妙语连珠、侃侃而谈,舌灿莲花。
3、画集合图在人数确认后,就让学生来分别指一指喜欢语文的和喜欢数学的以及两样都喜欢的。引导学生用黄颜色的笔圈出喜欢语文的同学。用红颜色的笔表示出喜欢数学的同学。让学生自己来思考、探索解决问题的方法,通过学生的操作与实践去发现、经历和体会集合图形成的过程,从而形成表象。让学生画圈,使画出集合图水到渠成,也让学生进一步体验到集合图的直观形象、简洁明了的作用。4、经过刚才的演示、讨论、交流,想想看,图该怎样改动?师生共同完成展示图的修改。5、学生修改自己的设计,同桌互查。只有给学生充足的时间“做数学”,画、说、站、调整……这样学生才能实现对新知识的自我建构。6、各部分的意义讨论各部分的意义。重点是让学生说清楚集合图各部分的意义,并在此基础上知道那些数学信息。
设计意图:在游戏中巩固策略,提高学生学习兴趣,缓解学习疲劳。这个游戏的“揭密”过程关注方法的多样化,让学生体会列方程的策略和倒推策略之间的联系,把新旧知识进行了有机地融合,以培养学生思维的灵活性和发散性。四、课堂小结 提升策略提问学生:这节课你学会了应用什么策略解决实际问题?什么类型的题目适合用今天的策略解答?用这样的策略解决实际问题要注意什么?你还有别的收获吗?设计意图:突出主题,让学生总结本课的学习内容和学习重点;同时关注学生的个性发展,引导学生进行个性化的总结,体现不同层次的学生对课堂教学的领悟程度。五、课堂作业列方程解决实际问题,完成练习一4、5两题。设计意图:及时反馈学生学习情况,为后续教学研究收集宝贵的教学信息。
2. 教材分析这节课的教学是学生在掌握行程问题基本数量关系的基础上进行的,本课教材给学生提供了“骑车”的情境,通过简单的路线图等方式呈现了速度路程等信息。然后要求学生根据这些信息去解决2个问题:①让学生根据两辆车的速度信息进行估计,在哪个地方相遇。②用方程解决相遇问题中求相遇时间的问题。3. 学情分析学生已经在三年级接触了简单的行程问题,四年级上册,学生就真正的开始学习速度、时间、路程之间的关系,并用三者的数量关系来解决行程问题。而本节课正是运用这些学生已有的知识基础和生活经验进行相遇问题的探究。4、教学目标从知识与技能、过程与方法、情感态度价值观的三维目标出发,制定了以下的目标:①使学生理解相遇问题的意义及特点。②经历解决问题的过程,提高收集信息、处理信息和建立模型的能力。③会分析简单实际问题中的数量关系,提高用方程解决简单的实际问题的能力。
第一个板块是“脑筋急转弯”,激发学习兴趣。目的有两个:一是拉近与学生的距离,二是为本节课做铺垫。第二板块是自主探究,优化策略。这一部分内容通过“操作感悟——抽象内化——巩固应用”三个片段,使学生在教师的点拨引导下,沿以下四个步骤:“一张和两张饼的烙法(基础)→三张饼的最佳烙法(难点)→双数饼、单数饼的烙法(提升)→最佳方案、双数饼:两张两张烙;单数饼:两张两张烙+最后3张饼交叉烙(优化)进行探究。1、探索烙3张饼的最少时间是本节课的重点也是难点,优化的数学思想只能是“渗透”而不能“明透”,也就是说只能让学生在潜移默化的过程中理解,而不能仅仅靠传授。因此,本课中蓄势----为探索最佳方法打基础的方法,自认为运用得恰到好处。例如,围绕“烙2张饼最少要花6分,为什么烙1张饼与2张饼所用的时间一样多呢?你们是怎么想的?”这个问题,让学生体会烙2张饼是用足了空间,而烙1张饼浪费了空间和时间,为探索烙3张饼埋下了伏笔。
一、说教材“植树问题”是人教版新课程标准实验教材五年级上册“数学广角”106页的内容。本节课主要探讨关于在一条线段植树的问题,只要教过这节课的老师都知道,即使在一条线段上植树也有不同的情形:本节课主要讲的例1,主要研究两端都要栽的植树问题,也是这一系列内容的起始课,教材以学生比较熟悉的植树活动为线索,让学生选用画线段图的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等数学探索的过程,并启发学生透过现象发现其中的规律,抽取出数学模型,再利用规律回归生活,解决生活实际问题。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。为此,本课制定了三个教学目标:
一.教材分析本节课是人教版六年级上册第38页例5,首先我对本节教材内容进行如下分析:本节课的教学设计力图体现“尊重学生,注重发展”,强调以学生为主体的学习活动对学生理解数学的重要性,本节教学内容分数除法中的解决问题,问题情境的数量关系表现为已知一个数的几分之几是多少,要求这个数,这样的的实际问题,与上一单元求一个数的几分之几是多少的实际问题,具有紧密的内在联系,即数量关系相同,区别在于已知数与未知数交换了位置,因此我有意识地采用多种活动方式,让学生理解知识的产生和发展的过程,尝到发现数学的滋味。 二.学情分析:我对我班学生也做了比较详细的分析,我班有13名学生,人数不多,但对数学知识的学习两极分化比较严重,大部分学生对数学学习有着浓厚的兴趣,但也有一部分学生与其他学生差异较大,对数学学习缺乏信心,积极思考的习惯有待于培养。因此在本节教学中,我关注更多的是用学生已有的知识经验激发学生的兴趣。
一、说教材《用比例解决问题》是义务教育课程标准实验教科书六年级下册第四单元比例的第三节比例的应用的一个子内容,这部分内容是在学生学习过比例的意义和基本性质,正比例和反比例意义基础上进行教学的,是比例知识的综合运用。教材在这部分内容中安排了例5和例6两个含正、反比例的问题,这类问题学生实际上已经接触过,只是用归一、归总的方法来解答,本节课要让学生从比例知识的角度寻找一种新的解决这种特殊数量关系的方法,从而丰富学生解决问题的策略。通过解答可以使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,同时,由于解答时是根据正、反比例的意义来列方程,也可以巩固和加深对所学的简易方程的认识。所以这一教学内容既是对前面所学的正、反比例知识的巩固和应用,另外也是为中学数学、物理、化学学科应用比例知识解决一些问题做较好的准备。
(设计意图:建构主义学习观认为,知识不是被动接受的,而是由学习主体主动建构的。鉴于此,以上设计中,改变了以往的例题示范、讲解为主的教学方式,而是放手让学生自主探索,把发现知识的权利还给了学生,学生拥有了真正自主探索的空间,那些原本应有教师去“教”的知识被学生主动地建构,学生真正成为学习的主人。此外,通过比较、点题环节设计,突出了本课的重点,帮助学生明确了思维方向,有效地促进了学生知识的正迁移。)5.总结:虽然解答方法不同,但结果是一样的,都是用连乘的方法解决实际问题的,这就是我们今天学习的用两步连乘解决实际问题。(揭示课题)在解决这类的实际问题时我们应该怎样去思考?你有什么好的策略、方法介绍给大家吗?(关键就是要找到有直接关系的两个信息,看能求出什么,再一步步地解答。)
3、小结比较观察三种方法,提出问题:为什么同一个问题有三种不同的解决方法?学生交流,教师小结:先解决的问题不同,选择的信息不同,图形拼摆的不同,解决的方法就不同,体现数形结合的思想。相同点是:无论思路如何,都是用连乘的方法解决问题。板书课题:解决问题——两步连乘应用题生活中还有很多这样的清况,想不想再尝试一下。(三)联系生活,优化方法,拓展深化,学校有特异为这些参加比赛的同学们购买了矿泉水,出示画面:共有20箱矿泉水,每箱24瓶,每瓶2元,请问学校共要支付多少钱?学生独立完成观察和思考的角度不同,先后选择的信息不同,所以同一道题有不同的解决方法。看来大家多用连乘的方法解决问题有了进一步的理解。生活中类似这样的问题很多,再来看一看:学校定好了水,付了钱,总得运回来吧.出示搬运车搬水到卡车上的画面:搬运车一次搬4摞,一摞3箱,一箱24瓶,请问搬运车一次能搬多少瓶?
1、基础题:妈妈煎鱼,一次锅里最多能煎3条鱼,每煎一面要4分钟,怎样才能最快煎鱼完9条鱼?(学生独立练习,指明一个学生板书,并说说解答的思路过程)2、提高题:在上题的基础上,把问题改成:怎样才能最快煎鱼完8条鱼?(学生发现总共16个面,16除以3等于5次还余1个面,那怎么办呢?可让学生讨论交流,余下的一个面还要煎一次,也就是5+1=6次,再用6乘4得到最快要24分钟。)当次数出现有余数时,我们采用进一法再加一次,公式还是成立。3、拓展题:那么怎样才能最快煎好15条?47条?100条鱼呢?[设计意图]经练习中巩固和验证了总结的规律,在练习的不同层次上满足了不同学生的学习需求,同时让学生感受到了数学与生活的密切联系,提高了学生解决实际问题的能力。四、归纳总结,提出希望。今天的这节课同学们有什么收获啊?生活中处处都有数学,只要同学们有一双善于观察和发现的眼睛,积极动脑思考,你一定会有收获。
《排队问题》是人教版教材第七册《数学广角》中的内容,是继“烙饼问题”、“沏茶问题”之后再一次向学生渗透运用运筹思想解决生活实际问题的新增内容。排队论是关于随机服务系统的理论,其中的一项研究是怎样使服务对象的等候时间最少的问题。这部分知识对学生来说,比较抽象,难以理解的。但由于学生在日常生活中都有过排队等候的经历,所以,在这节课的教学中,我想就用这个学生熟悉的情境为切入口,通过演绎、例举、观察、分析、优化,形象地帮助学生理解什么是“等候时间的总和”,以及归纳出按怎样的顺序安排才会使等候时间的总和最少。本节课采用“阅读-讨论式教学法”。通过让学生阅读教材中的主题图和相关文字,初步感知生活中的数学现象,通过讨论,合作学习,探索出各种排队等候的方案,在通过计算,对每种方案进行选择,从而找到最优化方法,在此过程中,让学生体会到运筹思想在解决生活中实际问题的作用。
这节课的教学内容是九年义务教育六年制小学教科书数学第九册,P117——P119页复习、例1、例2、解方程的一般步骤、想一想、做一做及P120页T1-4。教学目的有以下三点:1、使学生掌握列方程解两步应用题的方法。2、总结列方程解应用题的一般步骤。3、培养学生分析数量关系的能力,提高学生在列方程解应用题时分析等理关系的能力。教学重点:分析应用题里的等量关系,会列方程解应用题。教学难点:分析应用题里的等量关系。教具准备:小黑板、写好题目的纸条等。这节课在学生已有的解方程、分析应用题数量关系等知识的基础上进行教学,使学生掌握列方程解应用题的方法,为以后学习更深入的知识打下基础,同时培养学生积极思考问题,热爱自然科学的品质。
3、 教学例6仿照例5 的解题过程,用比例的知识来解答例6.练习后,让学生说一说自己是怎样想的。检查解答过程,弄清为什么列成积相等的等式解答。4、 小结应用比例知识解题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正(反)比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题的关键是什么?(正确判断成什么比例)怎样来列出等式?(正比例比值相等,反比例乘积相等)(三)练习提高1、基础练习2、判断说理不解答由学生打手势表示,增添了教学的趣味性,又增大了学生的参与面把握学生学习的效果。(四)全课小结这节课学习了什么内容?正反比例实际问题要怎样解答?
四、学以致用。1、用比例解决下列问题。五、课后延伸,深化拓展1、万老师骑摩托车从家到学校上班,6分钟行使了480米,照这样计算,他从家到学校共行使了20分钟。他家到学校的距离有多少米?2、今年元旦那天,小丽的妈妈到银川商城购物,发现有件保暖内衣质量不错,于是买了3件,共付了180元。回来后,邻居张大妈也想买几件,于是乘车到银川商城买同样的保暖内衣,她共付了300元,能买几件?3、解决课前提出的问题。(学校旗杆高一般由学校面积大小而定)提醒:同一时间、同一地点的身高和影长成正比例。根据实际情况,可以独立解答,也可以讨论解答。4、实践作业。1、一根粗细均匀的圆木,锯成了5段共用了326分钟,照这样计算,如果把这根圆木 锯成7段,需要多少分钟?2、请同学们利用上一题的原理测一测咱们学校的教学楼的高度。六、课堂总结。说说你的收获。评价自己的表现。教学反思:这节课上完之后我有以下三点感悟:( 一)课堂永远是无法完全预设的
在尊重学生已有的知识与经验基础上,努力营造一个充满“磁性”的课堂环境。着眼与培养学生的创新素质,作好学生学习活动的组织者、引导者、参与者,使每一名学生都能得到不同程度的发展。二、教材分析1.教材的地位和作用说课的内容是人教版六年级上分数乘法的应用题,分数乘法单元中求一个数的几分之几是多少的简单应用题。拟引导学生在提出和解决实际问题的过程中,学习“求一个数的几分之几是多少”的问题的解答方法。是在初中第一个培养学生应用意识的问题,能开发学生的创新思维,也是后面分数除法应用题的基础。《数学课程标准》倡导学习大众的、现实的、有价值的数学理念,因此教师在教学中,应该从学生熟悉的生活现实出发,让学生由具体的问题引入现实情境。将解决现实问题与学习分数乘法的知识相结合,帮助学生理解分数乘法应用题的计算方法,有利于培养学生解决实际问题的意识和能
1.本课修订版教材和未修订时的教材没有变化。教材首先是复习文字题:求一个数的几分之几是多少;然后教学例1:“学校买来100千克白菜,吃了 ,吃了多少千克白菜?”这道例题本身和学生联系不紧密,题材无新意,无情趣,课后有些习题又没有紧密结合生活实际,如第16页第7题:指出下面每组中的两个数,应把谁看作单位“1”?①乙是甲 。②乙的 相当于甲。这样教材本身就难以激发学生的学习兴趣,更谈不上给学生一种自主学习的氛围。面对这种现状,我们教师就应紧紧结合《数学课程标准》,灵活地、创造性地使用教材,体现新课程理念。2.课改的基本理念是:要关注学生、关注过程、关注发展。这节课我是打破了传统的教学方式,紧密结合新课程理念精心设计的。课上学生的反应与以往大不相同。首先在课前问题情境部分,学生的反应就让我惊喜,在学生自己的见解中,居然发现了地球吸引力和月球吸引力之间的关系,这是学生创新能力的真实表现。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。