教学过程我主要分为六部分:一、新课引入,二、探究新知 ,三、巩固新知,四、感悟收获,五、布置作业,六、板书设计 (一)、新课引入教师提问:一个直角三角形中,一个锐角正弦、余弦、正切值是怎么定义的? sinA如图在 Rt△ABC中,∠C=90°。(1)a、b、c三者之间的关系是 ,∠A+∠B= 。 (2)sinA=sinB= , cosB= ,tanB= 。 (3)若A=30°,则B(4)sinA和cosB有什么关系?____________________;【设计意图】回顾上节课所学的内容,便于后面教学的开展。 (二)、探究新知活动一、探索特殊角的三角函数,并填写课本表格[问题] 1、观察一副三角尺,其中有几个锐角?它们分别等于多少度? [问题] 2、sin30°等于多少呢?你是怎样得到的?与同伴交流. [问题] 3、cos30°等于多少?tan30°呢? [问题] 4、我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的? 1、特殊角的三角函数值表:
第一道例题提示学生把地基看成一个几何图形,即正六边形,逐步引导学生完成例题的解答。例题1:有一个亭子它的地基是半径为4米的正六边形,求地基的周长和面积(精确到0.1平方米)。第二道例题,我让学生独立完成,我在下面巡视,个别辅导,同时我将关注不同层次学生对本节知识的理解、掌握程度,及时调整教学。最后,引导学生总结这一类问题的求解方法。这两道例题旨在将实际问题转化成数学问题,将多边形化归成三角形来解决,体现了化归思想的应用。(七)、课堂小结(1)学完这节课你有哪些收获?(八)布置作业:我针对学生素质的差异设计了有层次的训练题,留给学生课后自主探究,这样即使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。
教学目标(一)教学知识点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.2.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.(二)能力训练要求发展学生的数学应用意识和解决问题的能力.(三)情感与价值观要求1.在经历弄清实际问题题意的过程中,画出示意图,培养独立思考问题的习惯和克服困难的勇气. 2.选择生活中学生感兴趣的题材,使学生能积极参与数学活动,提高学习数学、学好数学的欲望.教具重点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的作用.2.发展学生数学应用意识和解决问题的能力.教学难点根据题意,了解有关术语,准确地画出示意图.教学方法探索——发现法教具准备多媒体演示
1.了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用;(重点)2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长l=nπR180和扇形面积S扇=nπR2360的计算公式,并应用这些公式解决一些问题.(难点)一、情境导入如图是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗(π 取3.14)?我们容易看出这段铁轨是圆周长的14,所以铁轨的长度l≈2×3.14×1004=157(米). 如果圆心角是任意的角度,如何计算它所对的弧长呢?二、合作探究探究点一:弧长公式【类型一】 求弧长如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()
(8)物价部门规定,此新型通讯产品售价不得高于每件80元。在此情况下,售价定为多少元时,该公司可获得最大利润?最大利润为多少万元?若该公司计划年初投入进货成本m不超过200万元,请你分析一下,售价定为多少元,公司获利最大?售价定为多少元,公司获利最少?三、小练兵:某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,销售量y(件)与销售单价x(元)之间的函数关系式为y= –20 x +1800.(1)写出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(2)若童装厂规定该品牌童装销售单价不低于76元,不高于78元,那么商场销售该品牌童装获得的最大利润是多少元?(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,那么商场销售该品牌童装获得的最大利润是多少元?
方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 构造直角三角形解决面积问题在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面积.解析:过点A作AD⊥BC于点D,根据勾股定理求出BD、AD的长,再根据解直角三角形求出CD的长,最后根据三角形的面积公式解答即可.解:过点A作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
首先请学生分析:过B、C作梯形ABCD的高,将梯形分割成两个直角三角形和一个矩形来解.教师可请一名同学上黑板板书,其他学生笔答此题.教师在巡视中为个别学生解开疑点,查漏补缺.解:作BE⊥AD,CF⊥AD,垂足分别为E、F,则BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB长46m,坡角α等于30°,坝底宽AD约为68.8m.引导全体同学通过评价黑板上的板演,总结解坡度问题需要注意的问题:①适当添加辅助线,将梯形分割为直角三角形和矩形.③计算中尽量选择较简便、直接的关系式加以计算.三、课堂小结:请学生总结:解直角三角形时,运用直角三角形有关知识,通过数值计算,去求出图形中的某些边的长度或角的大小.在分析问题时,最好画出几何图形,按照图中的边角之间的关系进行计算.这样可以帮助思考、防止出错.四、布置作业
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
问题2、如何用测角仪测量一个低处物体的俯角呢?和测量仰角的步骤是一样的,只不过测量俯角时,转动度盘,使度盘的直径对准低处的目标,记下此时铅垂线所指的度数,同样根据“同角的余角相等”,铅垂线所指的度数就是低处的俯角.活动三:测量底部可以到达的物体的高度.“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体底部之间的距离.要测旗杆MN的高度,可按下列步骤进行:(如下图)1.在测点A处安置测倾器(即测角仪),测得M的仰角∠MCE=α.2.量出测点A到物体底部N的水平距离AN=l.3.量出测倾器(即测角仪)的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).根据测量数据,就能求出物体MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因为NE=AC=a,所以MN=ME+EN=l·tanα+a.
然后,她沿着坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度(参考数据:2≈1.41,结果精确到0.1米).解析:作辅助线EF⊥AC于点F,根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,通过平角减去其他角从而得到∠AEF=45°,即可求出AE的长度.解:作EF⊥AC于点F,根据题意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娱乐场地所在山坡AE的长度约为190.4米.方法总结:解决本题的关键是能借助仰角、俯角和坡度构造直角三角形,并结合图形利用三角函数解直角三角形.
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?解析:(1)分1≤x<50和50≤x≤90两种情况进行讨论,利用利润=每件的利润×销售的件数,即可求得函数的解析式;(2)利用(1)得到的两个解析式,结合二次函数与一次函数的性质分别求得最值,然后两种情况下取最大的即可.解:(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000;当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000.综上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)当1≤x<50时,y=-2x2+180x+2000,二次函数开口向下,对称轴为x=45,当x=45时,y最大=-2×452+180×45+2000=6050;当50≤x≤90时,y=-120x+12000,y随x的增大而减小,当x=50时,y最大=6000.综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元.方法总结:本题考查了二次函数的应用,读懂表格信息、理解利润的计算方法,即利润=每件的利润×销售的件数,是解决问题的关键.
解析:正多边形的边心距、半径、边长的一半正好构成直角三角形,根据勾股定理就可以求解.解:(1)设正三角形ABC的中心为O,BC切⊙O于点D,连接OB、OD,则OD⊥BC,BD=DC=a.则S圆环=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需测出弦BC(或AC,AB)的长;(3)结果一样,即S圆环=πa2;(4)S圆环=πa2.方法总结:正多边形的计算,一般是过中心作边的垂线,连接半径,把内切圆半径、外接圆半径、边心距,中心角之间的计算转化为解直角三角形.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型四】 圆内接正多边形的实际运用如图①,有一个宝塔,它的地基边缘是周长为26m的正五边形ABCDE(如图②),点O为中心(下列各题结果精确到0.1m).(1)求地基的中心到边缘的距离;(2)已知塔的墙体宽为1m,现要在塔的底层中心建一圆形底座的塑像,并且留出最窄处为1.6m的观光通道,问塑像底座的半径最大是多少?
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
三、加大巩固食用农产品市场“双提升”成果逐渐向有条件的农贸市场、集贸市场、大型商超等推进“双提升”工作,把“双提升”行动与监管执法紧密结合起来,加大监督检查力度,以规范进销货凭证为抓手,督促市场主体严格履行入场查验和进货查验义务,依法查处市场开办者和入场销售者不落实管理责任和主体责任的违法行为,以查促改,以严格执法促规范提升。四、大力推动食品流通领域“两个责任”的落实一是全力推动属地管理责任落实到位,在完成包保干部与包保主体匹配、签订责任承诺书的基础上,监管人员要积极开展包保干部提示,落实食品安全“两个责任”工作线上或线下培训,督促包保干部在每月、每季度完成包保督导任务,确保包保主体督导覆盖全部到位。二是积极督促企业主体责任落实到位,督促符合条件的大中型食品销售企业配备食品安全总监、食品安全员并履行好职责,建立“日管控、周排查、月调度”工作制度,记录好排查食品安全隐患和整改措施及时限,整理好相关资料。
(一)完善重大行政决策事项目录管理机制为推行政府重大决策事项年度目录公开制度,规范县政府重大行政决策作出程序,制定了《xx县人民政府重大行政决策工作流程规范》,《规范》中明确要求重大行政决策实行目录化管理机制。3月14日,下发了《xx县人民政府办公室关于提报2023年度县政府重大行政决策事项建议的通知》,收到部门提报的重大行政决策事项建议x项,根据提报情况拟编制了《xx县人民政府2023年重大行政决策事项目录》。2023年截至目前,审查了两件县政府重大行政决策事项,全部依法履行了公众参与、专家论证、风险评估、合法性审查、集体讨论决定程序。(二)完善行政复议决定回访机制2023年以来我县共办理行政复议案件xx件,目前已经结案xx件,其中确认违法x件、撤销x件。对于纠错的行政复议案件,复议机构均通过电话形式与申请人进行了回访,行政机关不存在不履行复议决定的情况。(三)开展行政执法监督“室所联动”为加快实现执法监督工作向乡镇延伸,释放基层监督力量功能,促进基层依法行政,我县在xx镇、xx镇、xx镇已建立3个“行政执法监督工作室”,开展“室所联动”试点。试点镇(街道)司法所加挂“xx县人民政府行政执法监督局工作室”牌子,负责本辖区内的行政执法监督工作。工作室负责人由乡镇(街道)司法所长兼任,同时接受县政府行政执法监督局工作领导。行政执法监督工作室立足职责权限,采取多项举措推进该机构的实体化运行。工作室挂牌成立后,完善各类办公软硬件条件,夯实实体化运行的基础。配备专职监督人员,张贴职责牌、流程图、监督人员牌,制定完善了规章制度和工作程序;公布了执法监督受理电话,畅通投诉举报途径。组织对3个全镇行政执法人员进行行政执法业务培训,提高了基层执法人员的执法水平和业务技能。工作室与县司法局人员多次到企业实地调研,听取优化营商环境和推进行政执法突出问题专项整治活动的意见和建议。
活动准备:1、笔、和表格人手一份。 2、猴子的手偶一个。 3、多媒体课件。 4、小红旗人手一面。活动流程: 猴子求救——幼儿帮助猴子找家——进行环保教育,同时介绍猴岛及一些美丽的海南风光——讨论——当个环保小卫士。 活动过程: (一)开始部分: 一、猴子求救 1、“孩子们,你们看猴子哭了!”2、让孩子们看: 猴子哭着说 “我没有家了,请大家帮帮我好吗?” 二、幼儿帮助猴子找家 1、“猴子为什么没有家呢?”让孩子们讨论 2、“你们能不能帮助猴子呢?”3、“那好,请你们把想出来的办法用标记记录出来,看谁的办法最多。”4、让孩子们分组画标记,想办法帮助猴子。
尊敬的老师,亲爱的同学们:大家好!我是来自初一(1)班的xx,今天我在国旗下讲话的题目是——《同心共建绿色家园》。曾经,有一个小女孩,在妈妈的熏陶下,她总要把垃圾扔进果皮箱里。有一次小女孩捡起了马路上的雪糕纸,要扔到马路对面的果皮箱里去。妈妈看着她走过去,然而一辆卡车飞驰过来,小女孩像一只蝴蝶一样飞走了。妈妈疯了,每天都在那个地方捡别人丢下的垃圾,她把那个垃圾箱擦得一尘不染,在上面贴上女儿的名字和美丽的相片。当地人被深深地感动了,不再乱扔垃圾,从此那座城市成为一座美丽的城市。故事让儿时的我泪眼朦胧,化成蝴蝶的小女孩让我朦胧中懂得保持清洁、爱护环境。长大了的我来到了东莞市的绿色学校——东莞中学松山湖学校。当我进入校园,迎面而来的是宽敞洁净的校道,碧绿如茵的草坪,郁郁葱葱的树木,芬芳四溢的花儿,还有蓝天、白云、青山、碧水,是那么的赏心悦目,是那样的幽静怡人。我深深地陶醉在这美丽的画卷中。这就是我将要朝夕相处的地方,这就是伴我成长的绿色家园。
国旗下的讲话演讲稿:学礼仪 讲美德 做文明学生尊敬的领导、敬爱的老师,亲爱的同学们: 大家上午好!今天我讲话的题目是《学礼仪 讲美德 做文明学生》 记得有人说过:“人,一撇一捺,写起来容易做起来难。我们要经常性地思考,我在做什么,我做得怎样,我要成为怎样的人。”做怎样的人,一百个人会有一百种答案,但在每一个答案的背后都有一个基点,那就是做人首先要做一个文明的人。在与同学交往中,我们要明礼守法讲美德。遵守校规校纪,自觉礼让排队,保持公共卫生,爱护公共财物。 做文明学生,我们还要衣着整洁,举止端庄,行为得体,不比吃喝穿戴,节粮节水节电,勤俭节约护校园。 孝亲尊师善待人。
这篇《国旗下的讲话演讲稿:文明美德伴我成长》,是特地,希望对大家有所帮助!纵横古今,中汉文明进程项记忆犹心,享誉中华,东方古国魅力层层绽开。佛道盛行,长安之春,大唐余风,汴京梦华,兴盛的时代畅想。中华五千年的文明辉煌传授继承,让我们感遭到了华夏文明的魅力;泱泱神州万年的纷纷呈现演绎,让我们与文明同行。一直钟情于品味渗透着华夏文明情素的文籍,也一直偏幸去感悟古神州的魂梦与沧桑。从遥远的新石器时代到最后的王朝,中汉文明超过了漫长的历史,在东方大陆上,她以伟大的创造力书写出了令整个世界都赞不绝口的历史传奇。她是人的总称古老文明中,传续到现在并且从头崛起的伟大文明。这是一部蕴涵着东方智慧的创造性实际历史诗,也是一部有浩繁精英人物和她们的故事编织成的历史长卷。我们一直在探索,也一直在追寻。从新石器时代开始,在神秘的人鱼文花纹陶盆和沟通天地的玉琮上涨起了远古文明的曙光,古色斑斓的青铜甲骨文标志着中汉文明步入了编年史的夏商周三代。年龄战国,是1个群星闪耀的时期,诸子蜂起,万家争鸣,她们配合完成了神州思想的奠基礼。
今天我国旗下讲话的题目是——共同创建文明校园。新学期开始了,我们又站在了新的起跑线上,新的一年开启新的希望,新的空白承载新的梦想。为了让我们的梦想能成为现实,在这里,我向全体同学提出以下希望:我们小学生要衣着整洁,符合学生身份,体现出新世纪学生蓬勃向上的风采。升旗仪式,最为庄严,这凝聚了文明与热血的国旗,在礼仪的包围中显得更加鲜艳。此时此刻,国旗下的我们要严肃认真、精神饱满、高唱国歌。校园文明更加重要,课间休息,不追逐打闹,不随地吐痰、乱扔纸屑、上下楼梯靠右行、见老师和客人要主动问好。我们还应该爱护校园里的花草树木和一切设施,不穿越绿化带,服从老师管理和接受值日学生的批评劝阻。