情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.
对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
在家活动要注意安全。特别是父母不在的时候,活动要远离建筑工地、道路等存在安全隐患的场所;不到坑、池、塘、沟、河流、水坝、施工重地等不安全的地方玩耍;不玩火,不燃放烟花爆竹,不带火种进入林区,防止意外伤害和森林火灾;不烤明火、煤火,以防煤气中毒。不进入网吧、电子游戏厅等未成年人禁止活动的场所。出门一定要告知父母长辈知道,告诉他们你和谁在什么地方玩,要注意时间,不要很晚到家,以免父母担心
导语:讲话稿有广义和狭义之分。广义的讲话稿是人们在特定场合发表讲话的文稿;狭义的讲话稿即一般所说的领导讲话稿,是各级领导在各种会议上发表带有宣传、指示、总结性质讲话的文稿。是应用写作研究的重要文体之一。表明事情的缘由。篇一:幼儿园大班新学期国旗下讲话稿 尊敬的老师们,亲爱的小朋友们,大家早上好!我叫李易珈,是大班的小朋友,每个星期一的早晨,我们幼儿园都会举行升旗仪式。今天是新学期的第一次升旗仪式, 我们小朋友迈着整齐的步伐,来到了五星红旗下,我的内心非常激动。我想大家和我的感觉也是一样的。从幼儿园的小弟弟、小妹妹长成了大哥哥、大姐姐,我们的知识一天天丰富;我们的能力一步步提高;我们每一点进步,每一次成功,都离不开我们亲爱的老师,是你们的细心呵护和教诲陪伴我们成长。在这里我代表所有的小朋友,向老师说一声“谢谢”新学期我们迎来了很多新朋友,我们大班的哥哥姐姐,会有一个崭新的面貌。
敬爱的各位领导、老师,亲爱的同学们:大家早上好!当新的一天开始,鲜艳的五星红旗冉冉升起,我内心便充满着对生活的感激,对长辈和同事的感恩,包含着我对六班的孩子们割舍不下深深的情谊!非常荣幸今天能站在国旗下讲话。我今天讲话的主题是:爱班教育。每一位翔宇学子进校时都有属于自己的班级。我们在场的每一位同学都不是一个完全独立的学生而存在。我们生活在集体中,我们是集体中的一员。我们的一言一行不仅仅代表着个人,更代表着班级和学校。我们要用自己的言行举止来提升班级的综合素养和学校的综合素养。而我们应该如何来爱我们的班级呢?爱班就是在校园内外见到师长记得喊老师好!不要因为自己的害羞而给老师留下一个不懂礼貌的背影。爱班就是真正做到不乱丢乱扔垃圾。让我们每天走过的校园只留下四季变化的痕迹,而没有垃圾的背影。爱班就是要求我们周一周五记得穿上校服。每天班级的清洁工作要按时完成,给大家营造一个干净的舒适的学习环境。
尊敬的老师、亲爱的同学们:大家好!战鼓擂响,旌旗飞扬,高考的战火已经熄灭;六月流火,放手一搏,中考的眉眼也在我们夜以继日的发奋中一天天清楚。在本周即将到来的中考眼前,同学们,我们应该时刻记住,只有拼出来的美丽,没有等出来的辉煌。没有焚膏继晷,就没有苦尽甘来;没有挑灯苦读,就没有明日的欣慰;没有“不怕远征难”的坚韧,梅州户外饮水尚需知其源,回看这一千多个日昼夜夜,师长的鼓励与呵责永远如同漫漫永夜中的灯火,如同遍天阴霾中的阳光,让我们在前进的路上看见希看,看见前方晴朗的天。
可爱的同学们、可敬的老师们:大家好! 结束了愉快的暑假生活,今天我们又聚集在xx小学校园里,迎接最有希望和生机的XX学年第一学期。今天是新一学期开学的第一天,我们在这里举行新学期升旗仪式,借此机会,我代表咱们学校,向全校师生致以最诚挚的祝福,祝全体同学和老师在新的一学期里身心健康、工作顺利、学习进步、梦想成真。 本学期,有六位新老师和一年级六十六位新同学加入了xx小学这个大家庭,请大家用热烈的掌声,对新老师和新同学表示最热烈的欢迎! 过去的一学年,在全体师生的共同努力下,学校取得了不少成绩,获得了不少荣誉。这是全体学生刻苦努力、勤奋学习的结果,更是老师们辛勤耕耘、用心浇灌的结果,它必将鼓舞我们满怀信心、昂首阔步踏上新学年的阳光大道! 同学们,面对徐徐升起的五星红旗,你们在想什么呢?作为一个小学生,如何使自己成为家庭的好孩子、学校的好学生、社会的好少年呢?将来如何更好地适应新形势的需求,把自己塑造成为符合时代发展的、能为社会作贡献的人才呢?
尊敬的各位老师、亲爱的各位同学: 大家上午好! 冬去春来,春意盎然,春天孕育着万千希望,意味着无限可能。在淅沥的春雨里,伴随着元宵节的鞭炮声,我们迎来了XX年春季学期。值此新学期开学之际,谨向全校师生员工致以新春的问候和最诚挚的祝福!祝大家新春快乐,猴年吉祥,身体健康,学业有成,工作顺利,平安幸福! 回首XX年,丹中全体师生团结进取,奋力拼搏,扎实有效地推进各项工作,取得了令人瞩目的成绩。 整体办学水平不断提升。XX年,学校被评为xx市文明单位和依法治校示范校。XX年,学校成为南京大学“创新人才培养战略合作伙伴”,被中国科学技术大学等著名高校评选为“优质生源基地”。 教学质量稳步提高。XX届高考本一达线率为56%,本二达线率为93%;400分以上6人,北大、清华录取8人。文理科进入xx省前100名3人,徐xx同学以406分列xx省文科第8名,创历史新高。高二学生学业水平考试407人取得了4A的成绩,人均加分达3.73分,一次性合格率达到100%,在xx市遥遥领先。
“如果你是一滴水,你是否滋润了一寸土地?如果你是一缕阳光,你是否照亮了一分黑暗?如果你是一颗最小的螺丝钉,你是否永远守在你的岗位上。。。。。。这,就是雷锋日记里最令人感慨万千的一段话。它揭示了雷锋精神的精髓——那就是付出,默默无闻地付出!那就是奉献,不求回报的奉献!那就是努力,不遗余力的努力!虽然雷锋已离开了我们,可是他那全心全意为人民服务的崇高理想;他那刻苦钻研,坚持学习的优秀品质;他那敬业爱岗,恪尽职守的工作态度,是值得我们永远学习的,向雷锋同志学习将是一个永恒的主题。在我们校园里,也有很多具有雷锋精神的好同学。那些拾金不昧的同学;那些在班级劳动中脏活抢着干的同学;那些看到地上有垃圾自觉捡起来的同学;那些认真刻苦学习的同学;那些主动帮助有困难之人的同学……他们不都是雷锋精神在我们实现生活中的体现吗?
三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具 高考试题中近一半的试题与这三个“二次”问题有关 本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。课程目标1. 通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。2. 使学生能够运用二次函数及其图像,性质解决实际问题. 3. 渗透数形结合思想,进一步培养学生综合解题能力。数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。
一、学校章程制度建设的重要意义 学校章程建设是推进依法治教、依法办学的需要,是构建现代学校管理体制的需要,是推动学校文化建设的需要,是依法推进教育改革和发展的需要,也是依法治校的一项基础性工程。各学校要通过学校章程编制建设,结合新的教育管理体制,认真研究学校制度建设情况,全面、认真地清理、修订已建立的学校管理制度,进一步完善相关工作规范和制度要求,在研究的基础上,通过全面的整理和整合,形成一套系统的、适应学校管理和发展的中小学常规管理制度。
每一个生命都弥足珍贵,当死亡近在咫尺之时,人类最初的本性便显露无疑,乘客们哭喊、咒骂,歇斯底里的情绪充斥着整个机舱,甚至有人解开安全带,吵闹着要下去……但更多的人是在倾诉对亲人的爱意,那个一个人去拉萨溜达的小姑娘后来勇敢的为人们鼓劲,那个不敢表白聋哑女孩的小伙子在飞机冲进云团最后一瞬喊出真心,那个欺骗老婆自己是大厨师的大汉跟妻子道歉,那个自己都呼吸困难的乘务员紧紧的拥抱小孩,温柔的告诉他:别怕!
第一,全面的家访,深入到每一个家庭细致了解,与家长学生面对面的交流,加强了社会,家庭,学生的联系,了解了家长的期望与要求。了解了学生的个性与想法,加强了师生感情,家访对以后的工作将起到积极的作用。 第二,全面的家访,了解了家长对子女的关切与期望,也了解了一些学生家庭的困境,增强了我们的责任感,也让我们更加热爱学生,热爱工作。 第三,交换访谈方式,为家访工作增加新的内涵。随着社会的发展,家访的'方式也随着改变。由于人们的职业特点、个人阅历、经济状况、文化素质、思想修养、性格脾气各不相同,学生家长可分为好多不同的类型。作为班主任应该具体问题具体分析,“到什么山唱什么歌”。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。