课题序号 授课班级 授课课时2授课形式新课授课章节 名称§9-1 平面基本性质使用教具多媒体课件教学目的1.了解平面的定义、表示法及特点,会用符号表示点、线、面之间的关系—基础模块 2.了解平面的基本性质和推论,会应用定理和推论解释生活中的一些现象—基础模块 3.会用斜二测画法画立体图形的直观图—基础模块 4.培养学生的空间想象能力教学重点用适当的符号表示点、线、面之间的关系;会用斜二测画法画立体图形的直观图教学难点从平面几何向立体几何的过渡,培养学生的空间想象能力.更新补充 删节内容 课外作业 教学后记能动手画,动脑想,但立体几何的语言及想象能力差
(明确:“寡人之于国也,尽心焉耳矣”,但“寡人之民不加多,何也?”)②他认为自己对国家政务尽心尽力了,他有哪些具体做法?(明确:移民移粟)③第2—4节中孟子是怎样说明梁惠王移民移粟的措施与“邻国之政”并无本质区别的?(明确:孟子不直接回答“民不加多”的问题,而是用梁惠王熟悉的“战”设喻——设圈套,诱使对方在不知不觉中说出“不可,直不百步耳,是亦走也。”)④孟子认为怎样才能做到“王道之始”?要想“王道之成”还需采取哪些措施?(明确:“不违农时,谷不可胜食也。数罟不入氵夸池,鱼鳖不可胜食也。斧斤以时入山林,材木不可胜用也。谷与鱼鳖不可胜食,材木不可胜用五亩之宅,树之以桑,五十者可以衣帛矣。鸡豚狗彘之畜,无失其时,七十者可以食肉矣。百亩之田,勿夺其时,数口之家,可以无饥矣。谨库序之教,申之以孝涕之义,颁白者不负戴于道路矣。)这一小步的目的是想让学生通过这些问题的解答,可以进一步理清思路,掌握文的大概内容。
(1)猜想设疑。组织学生进行游戏实践,结果可能是选择和少的那队赢了。为什么选择和多的那队没胜,选择和少的那队却胜了呢?这里面又藏着什么奥秘呢?“猜想”是有方向的猜测和判断,是学生有效学习的良好准备。这里通过引导学生大胆猜测,由猜测结果与实际结果不同而引发学生的认知冲突,进而激发学生的求知欲,为后面的教学埋下了伏笔,从而很自然的过渡到下一个环节。(2)统计实验。这部分教学让全体学生参与获得知识的全过程,并在实验中与统计知识有机结合起来,提高了学生综合运用知识的能力。同时让全体学生参与实验统计,实验数据更加充分,实验结果与预测更加接近,从而达到实验目的。
(四)深入探究,重新审视对策问题解决问题不是学习的最终目的,让学生不断体验对策的价值才是关键所在。对策的价值在哪里?设计对策的关键是什么?把问题抛给学生去思考,一方面让学生再次感受正确对策达到“以小打大”、“以弱胜强”妙处,更重要的是让学生明确设计对策的关键前提是什么?即“知己知彼,百战不殆”的数学思想,以便根据对手的变化灵活运用对策。教学步骤设计:1、学生探讨,如果齐王的下等马都比田忌的上等马快,田忌还有获胜的可能吗?2、田忌赛马第二次获胜的前提是什么?(田忌猜测道齐王安排赛马的出场顺序还和第一次一样)3、如果齐王安排赛马的出场顺序改变了,田忌该怎样才能获得胜利?(找两位同学分角色演示一下)4、回忆课前时候,老师为什么会在纸牌游戏“比大小中”屡战屡胜。
通过本节教学使学生学会运用直观的教学手段理解掌握新知识,学会有顺序的观察题、认真审题、正确计算、概括总结检查的学习习惯。四、教学程序一、复习1、说说每道题的运算顺序。2、问:在没有括号的算式里,如果有乘法又有加、减法,按怎样的顺序运算?在有括号的算式里,要按怎样的顺序运算?二、教学新课1、教学例2的第(1)题:说说这道题要先算哪一步再算哪一步?为什么要按照怎样的顺序运算?学生板演。2、教学例2的第(2)题。(1)说明:同样的,整数乘法的交换律、结合律对于分数乘法同样适用。(2)出示例2题(2):说说这道题例的数据有什么特点?这样算简便吗?为什么这样可以简便?应用了什么运算定律?按简便算法计算结果。3、练一练想先那些题可以用简便算法?指名板演。4、练习五2(做书上。第三题为什么可以用简便算法。)5、练习五后两题为什么这样算?三、巩固练习练习五1、3、5
为了进一步让学生掌握数数的规律,我把孩子们刚才数过的一些事物按照从小到大的顺序排列(多媒体课件),并要求学生再数一数,数完后再让他们读一读。这个环节的设计自始至终都让孩子自己去观察、动脑,主动参与到和他人的合作交流之中,在找、数和说的过程中探究新知,学会“一个一个地按顺序数数”。第三个环节:综合实践、学以致用。为了体现数学来于生活,用于生活的理念。首先,我出示了一些生活中孩子感兴趣的事物,要求孩子们正确地数出,并用数字来正确表述。此环节中,课件中所出示的图片与相应的数字一一对应,我让孩子们依次输出后,再指名同学用鼠标拖进正确的数字,孩子们觉得又新奇又好玩,纷纷要求上来试试,参与积极性非常之高。这是一个寓教于乐的环节,此环节中即让学生利用了和巩固新课中总结的新知识,又让学生在跃跃欲试的热情中感受到玩中学的乐趣。
这一环节的设计,我运用直观和操作的方法,调动小学生耳、眼、口、手多种感官参与学习活动,并且互相配合使学生的大脑保持兴奋状态,有利于学生形成完整正确的方位要领。而且使分类与方位结合在一起,让学生在玩中逐步了解到一个数学知识不可能单一存在,在生活中处处都存在多种的数学知识。(三)练中生趣,以趣促练1、出示一副美丽的田野风光,看到这么美的场景,同学们可展开想象的翅膀,随意添上你想加的物体,并且运用学过的知识小组间互相说几句话。这时学生有的加上一轮红日,有的加有一轮明月,有的可能画上一朵小花……小组间展开了激烈的讨论,都可以准确的说出谁在谁的上面,谁在谁的下面等等这些相对位置的话。2、课件展示一所空着的4层楼房,请同学们拿出手中喜欢的动物图片贴在空房子里,互相说一说你第一层、第二层、第三层、第四层分别贴的是哪些小动物,用我们学过的知识再说一说谁住在最下面,是第几层,第二层住的是谁,它在谁的上面、谁的下面,第三层呢?
(三)看书质疑师:今天探索的问题与教科书第20-21页里例2-例3的内容相似,打开看看,书是怎么解答的?有疑问的可以提出来。生认真看书。生质疑。三、模拟练习,拓展应用师:请看学校调查表(课件出示),还有什么问题没有解决啊?(买折叠车和同学去秋游的人数)想解决吗?(想)师:提供这个信息能解决什么问题呢?生:买车的人数。师:你会直接口算吗?会的请你站起来告诉大家。生都站了起来了。师:这么都同学会啊,老师很为你们高兴,还是请代表说。生说。师:你们有意见吗?生:没有(好)师:谁能求出选择秋游的人数?生:不能啊,条件不充分师:那你能根据图意估计一下,然后补充一个条件,使我们能用今天的知识算出这些人数吗?
2.交流讨论的结果:(老师根据学生的汇报板书)①假设都是鸡,则有8×2=16只脚,实际有26只脚多了26-16=10只脚.②一只鸡换成一只兔,就会多4-2=2只脚,所以笼子有10÷2=5只兔.③鸡就有8-5=3只.师:真是了不起,不用试也能求出鸡兔来,刚才我们是假使全是鸡,如果假使全是兔,会是怎样的情况呢?3.你还会用所学的方法解决吗?(引导学生用方程解答)4.我们已经能够用三种方法解答鸡兔同笼问题,到底对不对呢?怎样才能知道?———检验(板书)[设计意图:此环节是本课的重点,放手让学生合作探究,学生从体验、尝试到讨论、汇报,结合课件的直观演示,学生个人或集体的智慧在这里可以得到充分的展现。方程法、假设法对于大部分学生来说至少有一种方法是他自己会理解或掌握的,老师在学生汇报的过程中应机敏地倾听,机智地诱导,引导学生较为完整、准确地说明算理,特别是假设法算理,进而让全体学生在交流的过程中学会倾听、学会思考、学会解释、学会质疑,学会辩驳。]
深入研究领会《30岁以前不要计较的事情》这篇短文。这里我做以下简要解读:大学生毕业到一个单位,三年到五年不要计较的事情:干什么都行,多做几个不同的岗位更好,无论做什么,从长远看都是一段宝贵的经历和阅历。这也就是我经常说的:学多识广、见多识广、走(经)多识广,读万卷书不如走万里路。大家一定要记住:从基层做起,才是长远的成才之路。人无远虑,必有近忧。《孟子?告子下》讲:生于忧患而死于安乐。“苦难论”讲吃多大苦,才能干多大事,吃苦与成功成正比,也是这个道理,尽管这个话不是绝对的,但也属于大概率。
(六)6月份以来在FMXXX交通广播分别在早、中、晚高峰时段循环播放致全州无偿献血者的感谢语、无偿献血政策宣传等相关内容。(七)通过血站管理信息系统向在我站参加无偿献血的献血者发送节日祝福短信15万余条。(八)6月份来通过我站微信公众号在“高校专栏”开展高校无偿献血知识问卷调查,分别在XX学院、XX职业技术学院、XX职业技术学院等院校进行,目的是进一步了解青年学生献血动机、科普献血知识,为以后高校无的偿献血工作开展提供指导。(九)世界献血者日前夕,我站制定了“纪念第二十个世界献血者日”纪念奖杯500份,并于6月13-14日当天在各献血点发放,让献血更有“纪念”价值。四、硕果成效显著,促进献血事业(一)从6月12日到6月15日开展世界献血者日宣传活动以来,前到我站成功献血达733人次,合计献血量1217U。
早上好!今天是5月18日,国际博物馆日。有人说,了解一个地方的过去和现在是从博物馆开始的,还有人说博物馆如同历史长河,源源不断的将过去的故事输送到你的面前,是啊,每当你站在博物馆里,就仿若乘一叶扁舟,溯时间之河,穿过空间的阻隔,尽览历史的变迁,这是多么优美的意境啊!同学们,你们对博物馆有多少了解?你们知道博物馆有着怎样的历史吗?你知道世界五大博物馆分别指哪里吗?今天,让我们来一次奇妙的博物馆之旅,与历史、与文明进行一次深度对话。约在公元前五世纪,在希腊的特尔费·奥林帕斯神殿里,有一座收藏各种雕塑和战利品的宝库,他被博物馆界视为博物馆的开端。1753年,大英博物馆建立,成为全世界第一个对公众开放的现代意义的大型博物馆。1974年6月,国际博物馆协会与哥本哈根召开第十一届会议,将博物馆定义为“一个不追求赢利为社会和社会发展服务的公开的永久机构”。1977年国际博物馆协会为促进全球博物馆事业的健康发展,吸引全社会公众对博物馆事业的了解、参与和关注,向全世界宣告:1977年5月18日为第一个国际博物馆日,并每年为国际博物馆日确定活动主题,XX年的主题是:博物馆致力于社会的可持续发展。而法国的卢浮宫,英国的大不列颠博物馆,美国的大都会博物馆,俄罗斯的艾米塔什博物馆,中国的故宫博物馆位列世界五大博物馆行列。
南乡子·登京口北固亭有怀辛弃疾何处望神州?满眼风光北固楼。千古兴亡多少事?悠悠。不尽长江滚滚流。年少万兜鍪,坐断东南战未休。天下英雄谁敌手?曹刘。生子当如孙仲谋。
许慎的《说文》中讲:“亭,亭也,人所停集也。凡驿亭、邮亭、园亭,并取此义为名。”亭的历史十分悠久,一直可以上溯到商周以前。但是亭字的出现,却相对较晚,大致始于春秋战国前后。甲骨文,金文中均未见有亭字,现在发现的最早的亭字,是先秦时期的古陶文和古玺文。因此,在秦以前,亭的基本形制或许并不是十分成熟,但是到秦汉时,亭已经十分普遍了,是一种有着多种用途,实用性很强的建筑。
高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一. 他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献. 问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,"… " 前100项的和问题.等差数列中,下标和相等的两项和相等.设 an=n,则 a1=1,a2=2,a3=3,…如果数列{an} 是等差数列,p,q,s,t∈N*,且 p+q=s+t,则 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51问题2: 你能用上述方法计算1+2+3+… +101吗?问题3: 你能计算1+2+3+… +n吗?需要对项数的奇偶进行分类讨论.当n为偶数时, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2当n为奇数数时, n-1为偶数
新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.
二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
落日有落日的妙处,古代诗人在这方面留下不少优美的诗句,如象“大漠孤烟直,长河落日圆”、“落日照大旗,马鸣风萧萧”,可是再好,总不免有萧瑟之感。不如攀上奇峰陡壁,或是站在大海岩头,面对着弥漫的云天,在一瞬时间内,观察那伟大诞生的景象,看火、热、生命、光明怎样一起来到人间。但很长很长时间,我却没有机缘看日出,而只能从书本上去欣赏。海涅曾记叙从布罗肯高峰看日出的情景:我们一言不语地观看,那绯红的小球在天边升起,一片冬意朦胧的光照扩展开了,群山象是浮在一片白浪的海中,只有山尖分明突出,使人以为是站在一座小山丘上。在洪水泛滥的平原中间,只是这里或那里露出来一块块干的的土壤。
一、说教材 1.教材内容:九年义务教育六年制小学语文第十一册第八组第二十五课《学弈》。 2.教材简析:《学弈》这篇文言文选自《孟子·告子》,通过弈秋教两个人学下围棋的事,说明了做事必须专心致志,决不可三心二意的道理。文章先说弈秋是全国最擅长下围棋的人,然后讲弈秋同时教两个学习态度不同的人下围棋,学习效果截然不同,最后指出这两个人学习结果不同,并不是在智力上有多大差异。文言文是古代文明传承的媒介,虽与现代文在用词造句、朗读上有很大差别,但两者却有着千丝万缕、不可分割的内在联系
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。