二、游戏目的通过玩“拔萝卜”游戏,让孩子们懂得有些事情光一个人努力是不行的,要靠大家配合,才能做成一个人不能做成的事情。一个人是要努力锻炼自己的生活本领,像老公公那样,种的萝卜比别人的个儿大,但还要与其他人友好相处,在遇到困难的时候,像“拔萝卜”那样一个帮一个,劲往一处使,克服困难,走向成功。三、教学要求1.通过游戏使幼儿懂得人多力量大的道理并体验获得成功的欢快情感。2.要掌握的语言表现手段及非语言表现手段。①咬准字音:长、拔萝卜、婆婆、快来帮忙、妹妹。②不同的角色用不同的语调、音色讲话。③动作:(1)老公公种萝卜的过程中的动作。(2)拔萝卜的动作一拔不动发愁的动作一拔出来萝卜高兴的动作。(3)抬萝卜的动作。(4)萝卜长大的动作。
支持并积极参加我校举办的家长学校学习,并能做到按时到校、认真听讲、踊跃发言、完成作业。 2、有较正确的家庭教育思想和观念,掌握一定的家庭教育科学知识和方法,在学习中,能发表有建树,有启发的心得体会,并撰写1—2篇家教论文。
各位领导,各位老师,各位同学:大家早上好!我是高三35班的李xx。即将离开母校,此时此刻站在这里发言,我深感荣幸。在xx一中学习四年,我感觉很充实。学校的风景很美,让人流连忘返;学校的管理制度很严格,却不乏温情;班主任的严要求高标准让人喘不过气来,但班主任老师都是以父母般的爱心来对待我们。我们还有什么理由不爱我们的母校,不爱我们的老师,不爱我们的同学们呢?我对xx一中实在是太留恋了。在xx一中,我们每个人的求学经历都是不可复制的,包含的内容也是千姿百态。但有一点是相同的,那就是感恩。感恩母校,感谢母校对我们的接纳、包容和洗礼。美丽的校园像一棵葱郁的大树,我们像快乐的小鸟栖息其中。可是,雏鹰总要离开大树的怀抱,向着更高更远的目标飞翔。现在即将毕业,离开母校,我们依依不舍。
尊敬的老师,亲爱的同学们:日月如梭、光阴似箭,时间如风一般从指间溜走。一转眼六年过去了。六年,过的太快了。刚入学时的情景还历历在目,可我早以从那天真无邪、无忧无虑的孩子成长为一个面临毕业的少女。回想起六年来我所经历的酸甜苦辣.......我心中充满了不舍。毕竟在这里,我留下了我最宝贵的童年,最珍贵的回忆。在六年中,我们一起在操场上玩耍,一起上学,一起读书,一起分享快乐,一起互相安慰......还记得第一次见面时那害羞的我吗?我总是不太爱说话。
2、讲授新课:(35分钟)通过教材第一目的讲解,让学生明白,生活和学习中有许多蕴涵哲学道理的故事,表明哲学并不神秘总结并过渡:生活也离不开哲学,哲学可以是我正确看待自然、人生、和社会的发展,从而指导人们正确的认识和改造世界。整个过程将伴随着多媒体影像资料和生生对话讨论以提高学生的积极性。3、课堂反馈,知识迁移。最后对本科课进行小结,巩固重点难点,将本课的哲学知识迁移到与生活相关的例子,实现对知识的升华以及学生的再次创新;可使学生更深刻地理解重点和难点,为下一框学习做好准备。4、板书设计我采用直观板书的方法,对本课的知识网络在多媒体上进行展示。尽可能的简洁,清晰。使学生对知识框架一目了然,帮助学生构建本课的知识结构。5、布置作业我会留适当的自测题及教学案例让同学们做课后练习和思考,检验学生对本课重点的掌握以及对难点的理解。并及时反馈。对学生在理解中仍有困难的知识点,我会在以后的教学中予以疏导。
大家能够成为其中的一员,应该感到荣幸和自豪。希望大家一定要做好示范、当好表率,切实强化使命意识、责任意识,以勤奋、刻苦、严谨、专注的精神,尽快实现由干部到学员角色的转换,尽量脱离本单位的工作,真正把自己作为一名农学专业的学生,全身心投此次培训学习当中,高标准、高质量地完成好这次培训任务。同时也恳请 老师们对学员们严格要求,加强培训过程管理,确保广大学员学到“真知”、取到“真经”。
一是政局大局安定稳定。近年来,在中央、省委的坚强领导下,全市上下以崛起危难、浴火重生的勇气,集中打了一场“深刻汲取教训、净化政治生态、重塑X形象”的攻坚战,使X一度遭到破坏的政治生态明显好转。目前,全市上下呈现“人心思上、人心思进、人心思干”的良好氛围,呈现“心往一处想、劲往一处使、拧成一股绳”的良好格局。
此次发生的XX德尔塔变异毒株疫情,在7月20日报告首例确诊病例以来,短时间内已外溢14个省份,7月全国累计报告新增本土确诊病例328例,接近此前5个月的总和。另外7月31日,X市报告发现本土确诊病例11人,无症状感染者16人,8月1日,X又新增无症状感染者27人,初步考虑与X市第六人民医院(境外入境人员定点收治医院)关联,目前还未收到外溢报告。X洪灾时,全国各地的抗洪力量驰援X,其中不乏我省、我市前往支援的人员,这就意味着7月以来,除了X禄口机场的外溢疫情外,我们将面临第二轮可能出现的国内疫情外溢风险。部分地区确诊病例的感染源头不明,确定的高危人群还未全部核查到位,防控形势依然严峻复杂。
一是突出立新规、树新风,确保政局大局持续稳定。换届在即,新老交替,非常时期,非常之举。要坚决做到思想不准散、工作不准断、秩序不准乱,决不能得“换届病”,决不能耍“换届假”,决不能让职责挂“空档”。要坚持做到市委和X同志代表市委研究决定的事项不变,现有市委、人大、政府、政协领导班子成员的分工不变,市委运行机制不变,确保政策稳定性、工作连贯性和发展连续性。要暂停一般性休假请假,暂停一般性学习培训,暂停一般性外出考察。暂停是原则,特殊是例外,确实有特殊情况的,从严从紧、严格按规定程序审批。
一年之计在于春,再过十一天又到了“惊蛰”。俗话说,“过了惊蛰节,春耕不能歇”。今年已经过了快2个月,意味着一年繁重的工作任务要在10个月内完成。时间如流水,半点不等人。全县各级各部门要抢抓时节,迅速对干部职工进行教育收心,促使他们迅速清心醒脑,找回状态,全身心投入工作,开启一年新的征程。一是用典范收心。春节期间,涌现了一批坚守岗位的典范。当家家户户合家团圆的时候,环卫工人还在寒冷的大街小巷清扫街道;医生护士还在病房里治病救人;公安交警还在风雪中维护交通;水厂电站的工人还在厂房值守供水供电;公交汽运司机们还在往返穿梭运送乘客;还有在各个单位坚守岗位值班的人员……想想他们,我们坐得住、等得起吗?他们高度的责任感和敬业精神,就是我们值得学习的身边典范
课题序号6-3授课形式讲授与练习课题名称等比数列课时2教学 目标知识 目标理解并掌握等比数列的概念,掌握并能应用等比数列的通项公式及前n项和公式。能力 目标通过公式的推导和应用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题、分析问题、解决问题的一般思路和方法 。素质 目标通过对等比数列知识的学习,培养学生细心观察、认真分析、正确总结的科学思维习惯和严谨的学习态度。教学 重点等比数列的概念及通项公式、前n项和公式的推导过程及运用。教学 难点对等比数列的通项公式与求和公式变式运用。教学内容 调整无学生知识与 能力准备数列的概念课后拓展 练习 习题(P.21): 3,4.教学 反思 教研室 审核
课程名称数学课题名称8.2 直线的方程课时2授课日期2016.3任课教师刘娜目标群体14级五高班教学环境教室学习目标知识目标: (1)理解直线的倾角、斜率的概念; (2)掌握直线的倾角、斜率的计算方法. 职业通用能力目标: 正确分析问题的能力 制造业通用能力目标: 正确分析问题的能力学习重点直线的斜率公式的应用.学习难点直线的斜率概念和公式的理解.教法、学法讲授、分析、讨论、引导、提问教学媒体黑板、粉笔
课题序号 授课班级 授课课时2授课形式新课授课章节 名称§9-1 平面基本性质使用教具多媒体课件教学目的1.了解平面的定义、表示法及特点,会用符号表示点、线、面之间的关系—基础模块 2.了解平面的基本性质和推论,会应用定理和推论解释生活中的一些现象—基础模块 3.会用斜二测画法画立体图形的直观图—基础模块 4.培养学生的空间想象能力教学重点用适当的符号表示点、线、面之间的关系;会用斜二测画法画立体图形的直观图教学难点从平面几何向立体几何的过渡,培养学生的空间想象能力.更新补充 删节内容 课外作业 教学后记能动手画,动脑想,但立体几何的语言及想象能力差
系(部)医药授课教师戚文撷授课班级11(5),11(6)班授课类型新授课授课时数2课时授课周数第一周授课日期2012.2.15授课地点 教室课题第六章数列分课题§6.2 等差数列教学目标1. 理解等差数列的概念,掌握等差数列的通项公式;掌握等差中项的概念. 2. 逐步灵活应用等差数列的概念和通项公式解决问题. 3.等差数列的前N项之和 . 4.培养学生分析、比较、归纳的逻辑思维能力. . 2. 3.教学重点等差数列的概念及其通项公式. 教学难点等差数列通项公式的灵活运用. 教学方法情境教学法、自主探究式教学方法教学器材及设备黑板、粉笔复习提问提问内容姓名成绩1.数列的定义? 答: 2. 数列的通项公式? 答: 板书设计 §6.2.1等差数列的概念 1. 1.等差数列的定义 公差:d 2.常数列 3.等差数列的通项公式 an=a1+(n-1)d. 等差数列的前n 项和公式: 例题 练习作业布置习题第1,2题.课后小结本节课主要采用自主探究式教学方法.充分利用现实情景,尽可能地增加教学过程的趣味性、实践性.我再整个教学中强调学生的主动参与,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而达到使学生既获得知识又发展智能的目的.
授课 日期 班级16高造价 课题: §10.1 计数原理 教学目的要求: 1.掌握分类计数原理与分步计数原理的概念和区别; 2.能利用两个原理分析和解决一些简单的应用问题; 3.通过对一些应用问题的分析,培养自己的归纳概括和逻辑判断能力. 教学重点、难点: 两个原理的概念与区别 授课方法: 任务驱动法 小组合作学习法 教学参考及教具(含多媒体教学设备): 《单招教学大纲》、课件 授课执行情况及分析: 板书设计或授课提纲 §10.1 计数原理 1、加法原理 2、乘法原理 3、两个原理的区别
课程课题随机事件和概率授课教师李丹丹学时数2授课班级 授课时间 教学地点 背景分析正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件;分类用加法原理,分步用乘法原理,单纯这点学生是容易理解的,问题在于怎样合理地进行分类和分步教学中给出的练习均在课本例题的基础上稍加改动过的,目的就在于帮助学生对这一知识的理解与应用 学习目标 设 定知识目标能力(技能)目标态度与情感目标1、理解随机试验、随机事件、必然事件、不可能事件等概念 2、理解基本事件空间、基本事件的概念,会用集合表示基本事件空间和事件 1 会用随机试验、随机事件、必然事件、不可能事件等概念 2 会用基本事件空间、基本事件的概念,会用集合表示基本事件空间和事件 3、掌握事件的基本关系与运算 了解学习本章的意义,激发学生的兴趣. 学习任务 描 述 任务一,随机试验、随机事件、必然事件、不可能事件等概念 任务二,理解基本事件空间、基本事件的概念,会用集合表示基本事件空间和事件
反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
(2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。