解析:由分式有意义的条件得3x-1≠0,解得x≠13.则分式无意义的条件是x=13,故选C.方法总结:分式无意义的条件是分母等于0.【类型三】 分式值为0的条件若使分式x2-1x+1的值为零,则x的值为()A.-1 B.1或-1C.1 D.1和-1解析:由题意得x2-1=0且x+1≠0,解得x=1,故选C.方法总结:分式的值为零的条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.三、板书设计1.分式的概念:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有无意义的条件:当B≠0时,分式有意义;当B=0时,分式无意义.3.分式AB值为0的条件:当A=0,B≠0时,分式的值为0.本节采取的教学方法是引导学生独立思考、小组合作,完成对分式概念及意义的自主探索.提出问题让学生解决,问题由易到难,层层深入,既复习了旧知识又在类比过程中获得了解决新知识的途径.在这一环节提问应注意循序性,先易后难、由简到繁、层层递进,台阶式的提问使问题解决水到渠成.
把解集在数轴上表示出来,并将解集中的整数解写出来.解析:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集,再找出解集范围内的整数即可.解:x+23<1 ①,2(1-x)≤5 ②,由①得x<1,由②得x≥-32,∴不等式组的解集为-32≤x<1.则不等式组的整数解为-1,0.方法总结:此题主要考查了一元一次不等式组的解法,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.三、板书设计一元一次不等式组概念解法不等式组的解集利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的基础之上.解不等式组时,先解每一个不等式,再确定各个不等式组的解集的公共部分.
解析:(1)先把第二个分式的分母y-x化为-(x-y),再把分子相加减,分母不变;(2)先把第二个分式的分母a-b化为-(b-a),再把分子相加减,分母不变.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法总结:分式的分母互为相反数时,可以把其中一个分母放到带有负号的括号内,把分母化为完全相同.再根据同分母分式相加减的法则进行运算.三、板书设计1.同分母分式加减法法则:fg±hg=f±hg.2.分式的符号法则:fg=-f-g,-fg=f-g=-fg.本节课通过同分母分数的加减法类比得出同分母分式的加减法.易错点一是符号,二是结果的化简.在教学中,让学生参与课堂探究,进行自主归纳,并对易错点加强练习.从而让学生对知识的理解从感性认识上升到理性认识.
(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.【类型二】 旋转的性质的运用如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3则∠BE′C=________度.解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴△BEE′为等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板书设计1.旋转的概念将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米(结果精确到个位).解析:根据锐角三角函数关系表示出BF的长,进而求出EF的长,得出答案.解:延长DE交AB延长线于点F,则∠DFA=90°.∵∠A=45°,∴AF=DF.设EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,则DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大约是81米.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
解在角度单位状态为“度”的情况下(屏幕显示出 ),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求锐角x.(精确到1′)分析根据tan x= ,可以求出tan x的值,然后根据例4的方法就可以求出锐角x的值.四、课堂练习1. 使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知锐角a的三角函数值,使用计算器求锐角a.(精确到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、学习小结内容总结不同计算器操作不同,按键定义也不一样。同一锐角的正切值与余切值互为倒数。在生活中运用计算器一定要注意计算器说明书的保管与使用。方法归纳在解决直角三角形的相关问题时,常常使用计算器帮助我们处理比较复杂的计算。
③设每件衬衣降价x元,获得的利润为y元,则定价为 元 ,每件利润为 元 ,每星期多卖 件,实际卖出 件。所以Y= 。(0<X<20)何时有最大利润,最大利润为多少元?比较以上两种可能,衬衣定价多少元时,才能使利润最大?☆ 归纳反思 ☆总结得出求最值问题的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方法求出二次函数的最值。☆ 达标检测 ☆ 1、用长为6m的铁丝做成一个边长为xm的矩形,设矩形面积是ym2,,则y与x之间函数关系式为 ,当边长为 时矩形面积最大.2、蓝天汽车出租公司有200辆出租车,市场调查表明:当每辆车的日租金为300元时可全部租出;当每辆车的日租金提高10元时,每天租出的汽车会相应地减少4辆.问每辆出租车的日租金提高多少元,才会使公司一天有最多的收入?
如图所示,要用长20m的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为xm,花圃的面积为ym2,那么y=x(20-2x).试问:x为何值时,才能使y的值最大?二、合作探究探究点一:二次函数y=ax2+bx+c的最值已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为()A.3 B.-1 C.4 D.4或-1解析:∵二次函数y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故选C.方法总结:求二次函数的最大(小)值有三种方法,第一种是由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课堂达标训练” 第1题探究点二:利用二次函数求图形面积的最大值【类型一】 利用二次函数求矩形面积的最大值
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
(二)持续提升网办能力。全面推行政务服务事项“网上可办”“全程网办”“掌上办”“指尖办”“自助办”。狠抓落实“一网通办”各项数据指标提升工作,努力保持“一网通办”工作成绩在全市第一梯队。(三)推进综窗改革。严格按照“应进必进”原则,完成14个部门集中进驻并授权到位,已进驻部门完成自查“明进暗不进”,确保事项全部进驻并授权到位;同步推动“一窗受理”到位,7月底前,“分领域专区综合窗口”逐步推动业务整合,科学整合压缩窗口,削减行政成本,全面实施“集成服务”。“无差别综合窗口”根据我县实际情况,推进落实综窗接件人员到位,完成除9个分领域外的其它所有事项整合进驻无差别综窗,由政务服务中心综窗接件、统一推送、内部流转至部门审批、再综窗出件,扭转办件量少的部门也需派驻人员的财政经费浪费,实现效率集成、成本压缩。
纲要中指出:引导幼儿接触优秀的儿童文学作品,使之感受语言的丰富和优美。儿童散文诗就是一种介于诗歌和散文之间的儿童文学。它具有诗的意境和散文诗的形式,它注重自然地节奏感和音乐美,篇幅短小,还具有想象丰富,感情真挚,语言天真,意境优美,音调和谐,节奏感强等特点。《秋天的色彩》把菊花、枫叶、松树、大地拟人化,讲述了在它们眼中秋天的颜色。黄、红、绿都是生活中最为常见的颜色,且孩子们都喜欢鲜艳明快的色彩。中班幼儿的语言发展正处于关键期,由词转向短句。想象情感特征会充分展现,并从运用中获得自由表现的愉快体验。所以把本次活动定在中班开展。
3、培养幼儿爱听、会讲、能表演的学习能力和热爱祖国传统文化的美好情感。【活动准备】 1、“八仙”人物图片,“八仙过海”故事课件。 2、拐杖、萧、花篮等道具若干,《八仙过海》歌曲课件。 3、词卡“八仙过海,各显神通”。【活动过程】 1、播放歌曲“八仙过海”,让幼儿在优美的乐曲中坐好。 2、谈话引出八仙。 小朋友们好,谁能告诉老师:你都知道哪些神仙?嗯,小朋友们知道得真多,他们都会腾云驾雾,飞来飞去,还会很多变化。小朋友们喜欢神仙吗?接下来老师也给大家介绍几位神仙。” 3、出示“八仙”人物图片,了解“八仙”人物的典型特征。 向幼儿介绍“八仙”的名字,引导幼儿观察每位神仙的特征和他们手中拿的宝物,引导幼儿模仿一下他的神态,每介绍一位就让幼儿说出这是我们新认识的第几位神仙。
活动目标1. 运用不同的声势和肢体律动表现不同的音乐段落。2. 通过音乐欣赏启发幼儿分析、想象、思考、判断的能力,培养对音乐的感知以及合作能力。3. 在参与活动中体验到积极愉快,恬静柔美的情绪情感。活动准备1. 音乐:《小树叶》、《秋天的落叶》2. 塑料袋若干3. 树叶胸饰每人一个活动过程一. 在《小树叶》的音乐声中进入活动室。通过 感受乐曲的意境美,体会小树叶由害怕变勇敢的精神,激发幼儿不害怕事物的情感。二. 欣赏音乐《秋天的落叶》,启发幼儿运用不同的声势和肢体律动表现不同的音乐。(一)分段欣赏和表现树叶飘落、被雨淋、跳舞的情景。1. 欣赏A段,启发幼儿想象并表现树叶飘落2. 欣赏B段, 启发幼儿想象并表现树叶和雨嬉戏的场景。3. 欣赏C段,启发幼儿想象并表现树叶转圈跳舞欢乐的样子。4. 欣赏A段 启发幼儿想象并表现树叶宁静美。(二)完整表演落叶快乐的一天。1.完整欣赏音乐,感受秋风细雨中树叶跳舞的情景。2.激发幼儿用身体,大胆表现音乐。
五、分析文章结构以上分析的是3——11自然段,是本文的主体部分,下面我们来看看其他段落写什么。一问:首先我有一个问题,本文是写故都的秋,但也写到了江南之秋,主要在哪些段落?其作用是什么?明确:主要在2和13自然段,目的是以江南之秋来衬托故都的秋。二问:那么作者是抓住江南秋天什么特点来衬托故都的秋的?在结构安排上,为何要一前一后?明确:分别抓住其“看不饱,尝不透,赏玩不到十足”和“色彩不浓,回味不永”的特点,前者在第2自然段,后者在第13自然段,这样在结构上就形成了前后呼应。三问:好,从这篇文章结构来看,2和13自然段相呼应,假如1、14自然段也相呼应,那这篇文章的结构就更加严谨了,试问这两段是否有呼应?明确:第1段写作者对故都秋的感受和向往,第14段写作者对故都秋的眷恋之情,都是抒发情感,“向往”是在去故都之前,“眷恋”是在离开故都之时,其实质是一样的。所以1和14自然段也构成了呼应。
(一)倾听是感知音乐的前提自然地、有意识地引导幼儿倾听处于他身边的声音,比如幼儿所熟悉的动物,交通工具发出的声音和人们活动多发出的声音等,如果能从小培养幼儿对周围生活中各种声音的倾听兴趣和倾听能力,将会为他们欣赏音乐作品打下良好的基础以及丰富他们对声音的各种感性经验。(二)认识音乐作品中的表情作用音乐作品获得情绪体验和内心感受的基础上,教育者应有意识地进一步深入引导他们认识节拍、节奏、速度、力度、音色等音乐表现手段在艺术表现上的表情作用结合切身的音乐感受和体验,学习必要的音乐知识,从而巩固、发展和深化幼儿的音乐感受能力。
尊敬的各位评委老师: 你们好!我说课的内容是义务教育教科书人教版小学数学四年级下册第一单元第5-6页的内容《乘除法的意义和各部分间的关系》。下面我谈谈本节课的教学设想,不妥之处,恳请各位教师指正。一.我对教材的理解(教材分析)——参考教学参考书《乘除法的意义和各部分间的关系》是人教版小学四年级下册第一单元四则运算中第2课时的教学内容。本课是在学生对整数乘除法有了较多的接触,积累了丰富的感性认识并掌握了相应的基础知识和技能的基础上进行抽象、概括,上升到理性的认识。为后面学习的四则运算打基础,也为以后学习小数、分数的意义和关系做铺垫。二.学情分析(根据考评要求,可不说)因为年龄特征决定了四年级学生活泼好奇好动,虽具一定的抽象思维能力,但仍然以形象思维为主;就知识层面上,已经学习了简单整数乘除法,对整数乘除法及各部分名称有初步的感性认知,初步具备了理性认知学习的基础;同时又存在个体差异,多数学生思维活跃,数学兴趣浓厚,表现欲望强烈,少数学生缺乏积极性,学习被动。
一、教材分析《3的倍数的特征》是人教版实验教材小学数学五年级下册第19页的内容,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。教材的安排是先教学2、5的倍数的特征,再教学3的倍数的特征。因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,学生理解起来有一定的困难,因此,本课的教学目标,我从知识、能力、情感三方面综合考虑,确定教学目标如下:1、使学生通过理解和掌握3的倍数的特征,并且能熟练地去判断一个数是否是3的倍数,以培养学生观察、分析、动手操作及概括问题的能力,进一步发展学生的数感。
不足之处是: 1 、在如何有效地组织学生开展探索规律时,我认为猜想可以锻炼孩子们的创新思维,但猜想必须具有一定的基础,需要因势利导。在开展探索规律时,我先组织让学生猜想秘诀是什么?由于学生缺乏猜想的依据,因此,他们的思维不够活跃,甚至有的学生在 “乱猜 ”。这说明学生缺乏猜想的方向和思维的空间,也是教师在组织教学时需要考虑的问题。 2 、总怕学生在这节课里不能很好的接受知识,所以在个别应放手的地方却还在牵着学生走。总结性的语言也显得有些罗嗦。 3 、课堂上学生参与学习的程度差异很明显的:一部分学生争先恐后地应答,表现得很出众,很活跃;但更多的学生或缺乏勇气,或不善言辞,或没有机会,而沦为听众或观众。 4 、本节课在教学评价方式上略显单一。对学生的评价少,激励性的语言不够。
三、夯实责任◆一讲完成工作的时限。◆二讲工作任务要层层分解,落实责任。◆三讲工作中要齐心协力,上下联动,相互配合。◆四讲工作要分步推进,稳步实施。◆五讲要注意解决工作中出现的问题,要创造性地开展工作。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。