情景导学古语云:“勤学如春起之苗,不见其增,日有所长”如果对“春起之苗”每日用精密仪器度量,则每日的高度值按日期排在一起,可组成一个数列. 那么什么叫数列呢?二、问题探究1. 王芳从一岁到17岁,每年生日那天测量身高,将这些身高数据(单位:厘米)依次排成一列数:75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①记王芳第i岁的身高为 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我们发现h_i中的i反映了身高按岁数从1到17的顺序排列时的确定位置,即h_1=75 是排在第1位的数,h_2=87是排在第2位的数〖"…" ,h〗_17 =168是排在第17位的数,它们之间不能交换位置,所以①具有确定顺序的一列数。2. 在两河流域发掘的一块泥板(编号K90,约生产于公元前7世纪)上,有一列依次表示一个月中从第1天到第15天,每天月亮可见部分的数:5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
4.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有8个红球,3个白球,从中任取5个球,其中所含白球的个数为X.(2)一个袋中有5个同样大小的黑球,编号为1,2,3,4,5,从中任取3个球,取出的球的最大号码记为X.(3). 在本例(1)条件下,规定取出一个红球赢2元,而每取出一个白球输1元,以ξ表示赢得的钱数,结果如何?[解] (1)X可取0,1,2,3.X=0表示取5个球全是红球;X=1表示取1个白球,4个红球;X=2表示取2个白球,3个红球;X=3表示取3个白球,2个红球.(2)X可取3,4,5.X=3表示取出的球编号为1,2,3;X=4表示取出的球编号为1,2,4;1,3,4或2,3,4.X=5表示取出的球编号为1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5个球全是红球;ξ=7表示取1个白球,4个红球;ξ=4表示取2个白球,3个红球;ξ=1表示取3个白球,2个红球.
3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.
对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
同学们,人生就像一条奔腾不息的河流,有平静舒缓的静水深流,也有波涛汹涌的激流飞瀑,但无论如何这条生命之河都不会逆向流淌。大学作为其中的一段,亦是如此。面对这人生当中仅有一次的宝贵经历,任何一个人都没有理由不去珍视它。认识到这一点,我们就会更加明晰“我的人生”和“我的大学的责任。诗人歌德曾经说过:责任就是对自己要求去做的事情有一种爱。这就是说,做一个有责任的人近乎成了人的一种本能。因为爱我们的祖国,所以我们自然就有了“国家兴亡匹夫有责”的报国热情;因为爱我们的父母,所以我们自然就懂得了“谁言寸草心报得三春晖”的感恩之情;因为爱知识,所以我们从不缺少“路漫漫其修远兮,吾将上下而求索”的求知热情。责任,一个看似空泛的概念,实则充实而厚重。
欣赏完自己的表演后,接下来同学们的吉他独奏表演、歌曲合唱、相声表演更加让我感遭到了集体的魅力,多姿多彩的节目表演,展现了同学们多种不同的才艺,表现了当代大学生风姿多彩的才能,被气球和彩带装潢的教室正是由于地方不大,才更显示出了一家人的暖和。假如说第一次团日活动像一颗火炉暖和了交运3班这个大家庭,那末第二、第三次团日活动就是一股生命的气力把这个大家庭由出色一步步拥向辉煌。在集体参观伊利团体的第二次团日活动中通过了解伊利团体的历史沿革、生产范围还有当前其所面临的国际国内情势,让我感遭到中国企业的勃勃生机,特别是那叠放成品牛奶的铁架:真是一座牛奶大厦。
第一,要把以"客户为中心"的理念贯穿于我们工作的始终。"基础牢固,稳如泰山;基础不牢,地动山摇"。风险的防范与控制,说到底是人的因素起着重要作用,客户创造市场,客户创造价值,客户是我们的效益之源,是我们的衣食父母,有了客户,我们的业务才有发展,员工的价值才能够体现。 如果每个岗位的员工都能严格要求、严格规范、严格标准、严格执行规章制度,业务操作中的风险就会得到有效的遏制。要在全体员工中大力倡导、深入宣传价值最大化、资本约束、全面风险管理、风险与收益平衡、内控优先等先进理念,让全体员工了解资产质量与经济增加值、与薪酬分配的关系,自觉转变观念,将自身工作作为第一道防线纳入到风险控制体系中,引导和带领全行员工形成规范操作,防范风险的良好氛围,真正把为前台、为基层、为客户服务当作提升风险与回报管理水平的出发点和归宿,就能有效提高我行风险管理和内控政策、法规、制度的执行和落实,全面加强风险管理和内控建设具有不可替代的重要作用。
一、帮忙我成长,提高了我的自信心,意志本事。在拓展的真人CS中,对于女孩而言,拿着从来没有玩弄枪,在极其不熟悉的,恶劣的训练场地中,我们努力按照教练宣布的游戏规则进行。第一局结束,10号,战绩3战损2。自信心大增。所以在接下来的第二局,在已经被树枝伤到的情景下,我的战绩继续增加。意志力得到了锻炼。 二、拓展项目中培养合作意识,改善自我人际关系。在拓展训练---穿电网项目中,有80%的时间都是处在团队内部的相互交流和沟通中。经过大家共同的努力,我们在指定的时间里成功穿越。也经过这次的拓展,我和交大网络校区的教师们更加的熟悉。因为我们以往是“CS战队”的战友们。
实用主义较为普遍。不少单位在行政管理活动中采取实用主义的做法,对单位和个人有利的事情当仁不让,没有好处的事情拱手相让,以致出现互相推诿、行政执法不作为的现象,严重地损害了行政机关的形象。五是执法环境不宽松。由于社会关系网干扰较多,来自社会上上下下、方方面面、纵横交错的关系网,无时无处不在严重地干扰着依法行政。致使许多本来并不复杂的事情,相关法律、法规条文也很明晰,但处理起来却很棘手,导致久拖不决,决而不行,行而不果。
第一,要把以"客户为中心"的理念贯穿于我们工作的始终。"基础牢固,稳如泰山;基础不牢,地动山摇"。风险的防范与控制,说到底是人的因素起着重要作用,客户创造市场,客户创造价值,客户是我们的效益之源,是我们的衣食父母,有了客户,我们的业务才有发展,员工的价值才能够体现。 如果每个岗位的员工都能严格要求、严格规范、严格标准、严格执行规章制度,业务操作中的风险就会得到有效的遏制。要在全体员工中大力倡导、深入宣传价值最大化、资本约束、全面风险管理、风险与收益平衡、内控优先等先进理念,让全体员工了解资产质量与经济增加值、与薪酬分配的关系,自觉转变观念,将自身工作作为第一道防线纳入到风险控制体系中,引导和带领全行员工形成规范操作,防范风险的良好氛围,真正把为前台、为基层、为客户服务当作提升风险与回报管理水平的出发点和归宿,就能有效提高我行风险管理和内控政策、法规、制度的执行和落实,全面加强风险管理和内控建设具有不可替代的重要作用。
随着自己的不断长大,发现我们身上的责任也越来越大,因为我们是新时代的青年,我们要做好自己的责任,要努力学习。都说我们是垮掉的一代,实际上并不是,我们是抗疫的主力军,冲在最前面为国家人民保驾护航! 共青团建团百年作为新时代的的青年,我们要树立爱国主义精神,国家的前途,民族的命运,人民的幸福,是当代中国青年必须和必将承担的重任。 以便以后为国家和人民献上自己的一份力,在不远的将来我们国家会越来越好,中华民族屹立于世界民族之林,实现中华民族伟大复兴。
传统的数学教学因为过分预设和封闭,使课堂教学变得机械沉闷,缺乏生气和乐趣,学生始终处于从属地位,成了教师灌输知识的容器,课堂上倦怠应付,与创造的喜悦无缘,师生都无法在课堂上焕发生命的活力。 教学过程是师生交往、积极互动、共同发展的过程,是为学而教,以学定教,互教互学,教学相长的过程。教师必须改变传统的压抑学生创造性的教学环境,通过教学模式的优化,改变教师独占课堂、学生被动接受的信息传递方式,促成师生间、学生间的多向互动和教学关系的形成。
1、预计第8周,举办一至两场文学讲座。校领导、老师将全力支持,热情邀请文化底蕴深厚的老师作一次演讲,提高同学们的文学鉴赏能力和写作水平。 2、本学期文学社工作要开展得要认真仔细,积极发动鼓励同学们投稿,通过多种渠道宣传提高文学社的影响力。 3、本学期,文学社内部分工更为合理更为明确。
2、了解小树的生长过程,有初步的逻辑判断能力。 活动准备: 1、幼儿认识数字1—4,有初步目测4以内数的经验。 2、学具:相册模板16个,相应图片16套;教具:相册、照片范例。 活动过程: 1、导入,引起幼儿兴趣。 (1)师:树妈妈给树宝宝拍了许多照片,你们想看吗? 师:我们来看看,它都给小树拍了哪些照片。 (2)出示小树相片,幼儿感受照片上小树的不同数量和不同的生长阶段。 ①出示“小芽”的照片。 师:这是树宝宝的照片吗?是树宝宝什么时候的照片? 师:小的时候它叫什么呢? (引导幼儿说出小芽) 师:这是小树在小芽时候的照片,是几个小芽?(目测小芽的数量)
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。