本节通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。课程目标1.了解二分法的原理及其适用条件.2.掌握二分法的实施步骤.3.通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.数学学科素养1.数学抽象:二分法的概念;2.逻辑推理:用二分法求函数零点近似值的步骤;3.数学运算:求函数零点近似值;4.数学建模:通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用.
本节内容是学生学习了任意角和弧度制,任意角的三角函数后,安排的一节继续深入学习内容,是求三角函数值、化简三角函数式、证明三角恒等式的基本工具,是整个三角函数知识的基础,在教材中起承上启下的作用。同时,它体现的数学思想与方法在整个中学数学学习中起重要作用。课程目标1.理解并掌握同角三角函数基本关系式的推导及应用.2.会利用同角三角函数的基本关系式进行化简、求值与恒等式证明.数学学科素养1.数学抽象:理解同角三角函数基本关系式;2.逻辑推理: “sin α±cos α”同“sin αcos α”间的关系;3.数学运算:利用同角三角函数的基本关系式进行化简、求值与恒等式证明重点:理解并掌握同角三角函数基本关系式的推导及应用; 难点:会利用同角三角函数的基本关系式进行化简、求值与恒等式证明.
《数学1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本节课要求学生根据具体的函数图象能够借助计算机或信息技术工具计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法,从中体会函数与方程之间的联系;它既是本册书中的重点内容,又是对函数知识的拓展,既体现了函数在解方程中的重要应用,同时又为高中数学中函数与方程思想、数形结合思想、二分法的算法思想打下了基础,因此决定了它的重要地位.发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。课程目标 学科素养1.通过具体实例理解二分法的概念及其使用条件.2.了解二分法是求方程近似解的常用方法,能借助计算器用二分法求方程的近似解.3.会用二分法求一个函数在给定区间内的零点,从而求得方程的近似解. a.数学抽象:二分法的概念;b.逻辑推理:运用二分法求近似解的原理;
9.例二:如图,AB∩α=B,A?α, ?a.直线AB与a具有怎样的位置关系?为什么?解:直线AB与a是异面直线。理由如下:若直线AB与a不是异面直线,则它们相交或平行,设它们确定的平面为β,则B∈β, 由于经过点B与直线a有且仅有一个平面α,因此平面平面α与β重合,从而 , 进而A∈α,这与A?α矛盾。所以直线AB与a是异面直线。补充说明:例二告诉我们一种判断异面直线的方法:与一个平面相交的直线和这个平面内不经过交点的直线是异面直线。10. 例3 已知a,b,c是三条直线,如果a与b是异面直线,b与c是异面直线,那么a与c有怎样的位置关系?并画图说明.解: 直线a与直线c的位置关系可以是平行、相交、异面.如图(1)(2)(3).总结:判定两条直线是异面直线的方法(1)定义法:由定义判断两条直线不可能在同一平面内.
本节课是三角函数的继续,三角函数包含正弦函数、余弦函数、正切函数.而本课内容是正切函数的性质与图像.首先根据单位圆中正切函数的定义探究其图像,然后通过图像研究正切函数的性质. 课程目标1、掌握利用单位圆中正切函数定义得到图象的方法;2、能够利用正切函数图象准确归纳其性质并能简单地应用.数学学科素养1.数学抽象:借助单位圆理解正切函数的图像; 2.逻辑推理: 求正切函数的单调区间;3.数学运算:利用性质求周期、比较大小及判断奇偶性.4.直观想象:正切函数的图像; 5.数学建模:让学生借助数形结合的思想,通过图像探究正切函数的性质. 重点:能够利用正切函数图象准确归纳其性质并能简单地应用; 难点:掌握利用单位圆中正切函数定义得到其图象.
由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此本节课利用单位圆中的三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.课程目标1.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.2.理解正弦曲线与余弦曲线之间的联系. 数学学科素养1.数学抽象:正弦曲线与余弦曲线的概念; 2.逻辑推理:正弦曲线与余弦曲线的联系; 3.直观想象:正弦函数余弦函数的图像; 4.数学运算:五点作图; 5.数学建模:通过正弦、余弦图象图像,解决不等式问题及零点问题,这正是数形结合思想方法的应用.
本节课是正弦函数、余弦函数图像的继续,本课是正弦曲线、余弦曲线这两种曲线的特点得出正弦函数、余弦函数的性质. 课程目标1.了解周期函数与最小正周期的意义;2.了解三角函数的周期性和奇偶性;3.会利用周期性定义和诱导公式求简单三角函数的周期;4.借助图象直观理解正、余弦函数在[0,2π]上的性质(单调性、最值、图象与x轴的交点等);5.能利用性质解决一些简单问题. 数学学科素养1.数学抽象:理解周期函数、周期、最小正周期等的含义; 2.逻辑推理: 求正弦、余弦形函数的单调区间;3.数学运算:利用性质求周期、比较大小、最值、值域及判断奇偶性.4.数学建模:让学生借助数形结合的思想,通过图像探究正、余弦函数的性质.重点:通过正弦曲线、余弦曲线这两种曲线探究正弦函数、余弦函数的性质; 难点:应用正、余弦函数的性质来求含有cosx,sinx的函数的单调性、最值、值域及对称性.
指数函数与幂函数是相通的,本节在已经学习幂函数的基础上通过实例总结归纳指数函数的概念,通过函数的三个特征解决一些与函数概念有关的问题.课程目标1、通过实际问题了解指数函数的实际背景;2、理解指数函数的概念和意义.数学学科素养1.数学抽象:指数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用指数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结指数函数概念.重点:理解指数函数的概念和意义;难点:理解指数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入在本章的开头,问题(1)中时间 与GDP值中的 ,请问这两个函数有什么共同特征.要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
1.探究:根据基本事实的推论2,3,过两条平行直线或两条相交直线,有且只有一个平面,由此可以想到,如果一个平面内有两条相交或平行直线都与另一个平面平行,是否就能使这两个平面平行?如图(1),a和b分别是矩形硬纸板的两条对边所在直线,它们都和桌面平行,那么硬纸板和桌面平行吗?如图(2),c和d分别是三角尺相邻两边所在直线,它们都和桌面平行,那么三角尺与桌面平行吗?2.如果一个平面内有两条平行直线与另一个平面平行,这两个平面不一定平行。我们借助长方体模型来说明。如图,在平面A’ADD’内画一条与AA’平行的直线EF,显然AA’与EF都平行于平面DD’CC’,但这两条平行直线所在平面AA’DD’与平面DD’CC’相交。3.如果一个平面内有两条相交直线与另一个平面平行,这两个平面是平行的,如图,平面ABCD内两条相交直线A’C’,B’D’平行。
问题导入:问题一:试验1:分别抛掷两枚质地均匀的硬币,A=“第一枚硬币正面朝上”,B=“第二枚硬币正面朝上”。事件A的发生是否影响事件B的概率?因为两枚硬币分别抛掷,第一枚硬币的抛掷结果与第二枚硬币的抛掷结果互相不受影响,所以事件A发生与否不影响事件B发生的概率。问题二:计算试验1中的P(A),P(B),P(AB),你有什么发现?在该试验中,用1表示硬币“正面朝上”,用0表示“反面朝上”,则样本空间Ω={(1,1),(1,0),(0,1),(0,0)},包含4个等可能的样本点。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率计算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)积事件AB的概率恰好等于事件A、B概率的乘积。问题三:试验2:一个袋子中装有标号分别是1,2,3,4的4个球,除标号外没有其他差异。
新知探究:向量的减法运算定义问题四:你能根据实数的减法运算定义向量的减法运算吗?由两个向量和的定义已知 即任意向量与其相反向量的和是零向量。求两个向量差的运算叫做向量的减法。我们看到,向量的减法可以转化为向量的加法来进行:减去一个向量相当于加上这个向量的相反向量。即新知探究(二):向量减法的作图方法知识探究(三):向量减法的几何意义问题六:根据问题五,思考一下向量减法的几何意义是什么?问题七:非零共线向量怎样做减法运算? 问题八:非零共线向量怎样做减法运算?1.共线同向2.共线反向小试牛刀判一判(正确的打“√”,错误的打“×”)(1)两个向量的差仍是一个向量。 (√ )(2)向量的减法实质上是向量的加法的逆运算. ( √ )(3)向量a与向量b的差与向量b与向量a的差互为相反向量。 ( √ )(4)相反向量是共线向量。 ( √ )
1.观察(1)如图,在阳光下观察直立于地面的旗杆AB及它在地面影子BC,旗杆所在直线与影子所在直线的位置关系是什么?(2)随着时间的变化,影子BC的位置在不断的变化,旗杆所在直线AB与其影子B’C’所在直线是否保持垂直?经观察我们知道AB与BC永远垂直,也就是AB垂直于地面上所有过点B的直线。而不过点B的直线在地面内总是能找到过点B的直线与之平行。因此AB与地面上所有直线均垂直。一般地,如果一条直线与一个平面α内所有直线均垂直,我们就说l垂直α,记作l⊥α。2.定义:①文字叙述:如果直线l与平面α内的所有 直线都垂直,就说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做交点.②图形语言:如图.画直线l与平面α垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.③符号语言:任意a?α,都有l⊥a?l⊥α.
1.观察(1)如图,在阳光下观察直立于地面的旗杆AB及它在地面影子BC,旗杆所在直线与影子所在直线的位置关系是什么?(2)随着时间的变化,影子BC的位置在不断的变化,旗杆所在直线AB与其影子B’C’所在直线是否保持垂直?经观察我们知道AB与BC永远垂直,也就是AB垂直于地面上所有过点B的直线。而不过点B的直线在地面内总是能找到过点B的直线与之平行。因此AB与地面上所有直线均垂直。一般地,如果一条直线与一个平面α内所有直线均垂直,我们就说l垂直α,记作l⊥α。2.定义:①文字叙述:如果直线l与平面α内的所有 直线都垂直,就说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做交点.②图形语言:如图.画直线l与平面α垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.
6.例二:如图在正方体ABCD-A’B’C’D’中,O’为底面A’B’C’D’的中心,求证:AO’⊥BD 证明:如图,连接B’D’,∵ABCD-A’B’C’D’是正方体∴BB’//DD’,BB’=DD’∴四边形BB’DD’是平行四边形∴B’D’//BD∴直线AO’与B’D’所成角即为直线AO’与BD所成角连接AB’,AD’易证AB’=AD’又O’为底面A’B’C’D’的中心∴O’为B’D’的中点∴AO’⊥B’D’,AO’⊥BD7.例三如图所示,四面体A-BCD中,E,F分别是AB,CD的中点.若BD,AC所成的角为60°,且BD=AC=2.求EF的长度.解:取BC中点O,连接OE,OF,如图。∵E,F分别是AB,CD的中点,∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE与OF所成的锐角就是AC与BD所成的角∵BD,AC所成角为60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1当∠EOF=60°时,EF=OE=OF=1,当∠EOF=120°时,取EF的中点M,连接OM,则OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=
“初心”是一面省视自我的明镜。《大学》有云“知止而后有定,定而后能静,静而后能安,安而后能虑,虑而后能得。”“初心”之后,我们的意志方能“坚定”,找到自己真正应该努力的方向,继而静心思考,摒弃一切偏执和杂念,明心见性。“初心”既让我们看到自己能做什么,更让我们认清自己不能做什么。我们不能只会扮演“我跟随”的过堂小丑,更应做一名“我引领”的勇敢斗士。雏鹰折翅,方能搏击长空;凤凰涅槃,方能翅展云天;壮士断腕,方显英雄本色。“初心”,正如一面明镜,让我们认清自我,把握方向,超越自我,成就人生。
一、工作推动情况 (一)目标任务完成情况 1.项目招引方面。全年完成项目数xx个(其中xx亿元以上项目x个,xx—xx亿元项目x个)。完成招优引专项目xx个,其中先进制造业项目x个、生产性服务业项目xx个、高品质科创空间项目xx个。 2.资金到位方面。实际到位内资xxx.xx亿元;外商投资实际到位xx.xx亿元;外商直接投资(FDI)x.xxxx亿美元。 3.省级平台“三率”方面。x—xx月履约率、开工率、资金到位率分别为xxx%、xx.xx%、xx.xx%。 (二)主要工作举措 1.搭建招商工作体系,绘制项目招引工作“流程图”。一是构架“市场化专业化”创新体制。按照政府主导、项目化管理、企业化运营的改革思路,探索通过公司化方式,提升招引工作市场化、专业化水平,形成统筹有力、精简高效、经营专业的“行政部门+企业”的投资促进管理经营新模式。二是构建“全员招商”机制。构建以投促中心、产业部门为主线,集合各部门、街道、公司多方力量开展专业招商机制,形成一体联动、分线出击的全员招商新局面。三是构筑“全生命周期运行”体系。强化项目招引统筹,主动谋划实施《投资促进议事规则和投资促进工作制度》《投资促进工作目标考核办法》等制度办法,构建环环相扣、动态管理、追责问效的投资促进项目管理推进体系。
一、坚持疫情防控常态化,全面支持企业复工复产新年伊始,**街道春潮涌动,各行各业相继开工赶生产,为实现首季“开门红”,**街道坚持疫情防控常态化,以重点项目建设、重点企业服务为抓手,提前谋划、集中发力、强化措施,瞄准全年目标任务,狠抓全年经济工作,支持企业员工留岗,全力助推辖区企业复工复产,保障辖区经济发展稳中推进。今年以来,街道与企业、项目单位积极对接,在积极做好疫情防控工作的同时,鼓励企业抓紧全面复工复产。为支持疫情期间经济发展,鼓励及早复工,依据《关于下达**市规上服务业企业外省员工新春留岗奖励资金的通知》(筑发改三产〔****〕***号)、《**市财政局**市商务局关于下达**市****年限额以上批零餐企业外省员工新春留岗奖励资金的通知》(筑财建〔****〕**号)文件要求,街道积极组织辖区企业开展扶持奖励申报,以高效、便捷、规范为原则,采取实地走访、电话走访等多种形式全力做好春节期间企业外省员工留岗奖励的宣传和申报工作,期间共宣传通知企业***余家,搜集符合条件的申报企业资料**家,合计申报人数***人,实际审批通过人数***人,发放兑现新春留岗奖励合计**万元。
(一)招商引资工作情况1.统筹制定全年任务,优化理顺工作机制。一是组织架构赋能,激发招商引资新活力。承接专班招商引资专项小组、综合协调专项小组工作,统筹推动各项市级专项招商工作。对接区委组织部开展xx区青年干部招商先锋队筹建及业务招商指导、业务培训、日常管理、成果考核等工作。二是考核指标固能,保障考核目标使命达。形成“企聚xx”2023年招商引资工作方案,梳理形成《xx区2023年企聚xx招商引资重点任务清单》,形成《“招商引资”考核指标评分标准(2023年)》《xx区青年干部招商先锋队招商任务考核标准》,保障目标任务落实到位。三是工作制度强能,实现工作推进高效行。建立周例会、周报、月总结汇报三个协调机制。制定标准化招商推介材料,组织招商引资专题业务培训。2.加快签约项目落地,助推实现“数税双收”。累计引进优质企业xx家,预计可实现年营收xx.x亿元、年纳税约x.xx亿元、投资总额xx.xx亿元。其中,预计年纳税xxxx万以上企业x家。xx家已落地企业中,市外投资企业共x家。深南东总部产业空间招商先锋队已引进项目x个,正在进行注册x个项目。3.推进储备重点项目。2023年1月至6月,储备重点在谈项目xx个。xxx强/央企/国企/外商投资项目x个、上市公司投资项目x个、准独角兽项目x个、国高企业项目x个。深南东总部产业空间招商先锋队已对接企业xx家,重点跟进项目xx个。4.拓宽招商引资渠道,集聚优质项目资源。召开招商引资推介会,会同市商务局举办“2023伦敦科技周—中英科技企业交流活动”。加大力度对接第三方资源,注重产业研究,发力国际资源,开展楼宇招商,广建渠道网络。
(一)畜禽方面:1、xx市一季度出栏生猪20.02万头,存栏36.76万头,能繁母猪3.45万头,同比增长分别为29.24%、12.04%、0.88%。2、2023年3月3日至8日,畜水中心组织人员对全市畜禽养殖场进行抽查,共抽查畜禽养殖场59个,其中生猪养殖场52个,家禽养殖场5个,消纳池2个,发现问题4个并给出整改建议,已移交到益阳市生态环境局(xx分局)处理。同时下发《关于开展畜禽养殖污染防治巡查工作的通知》,要求各镇、街道、中心建立畜禽养殖污染防治巡查长效机制,定期组织人员对辖区内的畜禽养殖场进行巡查,发现问题及时整改。3、完成动物春节疫苗接种。集中免疫猪O型口蹄疫苗30万毫升,牛羊口蹄疫疫苗。0.4万毫升,高致病性禽流感疫苗140万毫升。4、我市是农业部环洞庭湖禽流感监测县和家畜血吸虫的纵向观测点,配合采集和监测禽流感样品380份,监测家畜粪样104份。5、兽医实验升级改造已经完成,共投入资金120万元,我市已具备非洲猪瘟、禽流感病原检测能力。
各位老师、同学们你们好:今天我国旗下讲话的题目是《安全牢记心中,5.12防灾减灾日》。祖国的未来属于我们,我们未来的生活将是多么美好。但是,生活中还有许多需要我们注意的事情,我们需要增强自我保护的能力。据统计,去年,我国有1.6万多名中小学生因食物中毒、溺水、交通事故等导致非正常死亡。人类社会还面临着各种各样自然灾害的威胁。据统计,台风、洪灾、地震、泥石流等各种自然灾害每年给人类生命财产造成重大损失。大量事实表明,防灾减灾的意识不强,自救互救知识缺乏是灾害造成人员伤亡的主要原因。对生命的尊重和珍视是人类社会永远不变的追求。我们要对每一个生命负责,通过各种办法,增强公众的公共安全意识、社会责任意识和避灾自救意识,使公众能够掌握避灾自救基本常识、专业知识和技能技巧,提高公众应对突发公共事件的综合素质和避灾自救能力,把灾害造成的人员伤亡减少到最低程度。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。