
把解集在数轴上表示出来,并将解集中的整数解写出来.解析:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集,再找出解集范围内的整数即可.解:x+23<1 ①,2(1-x)≤5 ②,由①得x<1,由②得x≥-32,∴不等式组的解集为-32≤x<1.则不等式组的整数解为-1,0.方法总结:此题主要考查了一元一次不等式组的解法,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.三、板书设计一元一次不等式组概念解法不等式组的解集利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的基础之上.解不等式组时,先解每一个不等式,再确定各个不等式组的解集的公共部分.

分式1x2-3x与2x2-9的最简公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最简公分母为x(x+3)(x-3).方法总结:最简公分母的确定:最简公分母的系数,取各个分母的系数的最小公倍数;字母及式子取各分母中所有字母和式子的最高次幂.“所有字母和式子的最高次幂”是指“凡出现的字母(或含字母的式子)为底数的幂的因式选取指数最大的”;当分母是多项式时,一般应先因式分解.【类型二】 分母是单项式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先确定最简公分母,找到各个分母应当乘的单项式,分子也相应地乘以这个单项式.解:(1)最简公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最简公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最简公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.

有三种购买方案:购A型0台,B型10台;A型1台,B型9台;A型2台,B型8台;(2)240x+200(10-x)≥2040,解得x≥1,∴x为1或2.当x=1时,购买资金为12×1+10×9=102(万元);当x=2时,购买资金为12×2+10×8=104(万元).答:为了节约资金,应选购A型1台,B型9台.方法总结:此题将现实生活中的事件与数学思想联系起来,属于最优化问题,在确定最优方案时,应把几种情况进行比较.三、板书设计应用一元一次不等式解决实际问题的步骤:实际问题――→找出不等关系设未知数列不等式―→解不等式―→结合实际问题确定答案本节课通过实例引入,激发学生的学习兴趣,让学生积极参与,讲练结合,引导学生找不等关系列不等式.在教学过程中,可通过类比列一元一次方程解决实际问题的方法来学习,让学生认识到列方程与列不等式的区别与联系.

(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.【类型二】 旋转的性质的运用如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3则∠BE′C=________度.解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴△BEE′为等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板书设计1.旋转的概念将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.

探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.

∴此方程无解.∴两个正方形的面积之和不可能等于12cm2.方法总结:对于生活中的应用题,首先要全面理解题意,然后根据实际问题的要求,确定用哪些数学知识和方法解决,如本题用方程思想和一元二次方程的根的判定方法来解决.三、板书设计列一元二次方程解应用题的一般步骤可以归结为“审,设,列,解,检,答”六个步骤:(1)审:审题要弄清已知量和未知量,问题中的等量关系;(2)设:设未知数,有直接和间接两种设法,因题而异;(3)列:列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式表示相等关系中的各个量,即可得到方程;(4)解:求出所列方程的解;(5)检:检验方程的解是否正确,是否保证实际问题有意义;(6)答:根据题意,选择合理的答案.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型.通过学生创设解决问题的方案,增强学生的数学应用意识和能力.

【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

四.知识梳理谈谈用一元二次方程解决例1实际问题的方法。五、目标检测设计1.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,则每个小长方形的面积为( ).【设计意图】发现几何图形中隐蔽的相等关系.2.镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.【设计意图】考查学生的审题能力及用一元二次方程模型解决简单的图形面积问题.

5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?

5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?

【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

一、说教材《十六年前的回忆》是统编语文小学六年级下册第四单元中的一篇精读课文。本课的作者是李星华,通过对李大钊被捕前到被捕后的回忆,展示了革命先烈忠于革命事业的伟大精神和面对敌人坚贞不屈的高贵品质,表达了作者对父亲的敬仰与深切的怀念。除开头外,文章是按被捕前、被捕时、法庭上、被害后的顺序来叙述的。被捕前写父亲烧掉文件和书籍,工友阎振三被抓,反映出形势的险恶与处境的危险;被捕时写了敌人的心虚、残暴与父亲的处变不惊;法庭上描写了李大钊的镇定、沉着;被害后写了全家的无比沉痛。 本文是回忆录。作者采用第一人称的叙述方式,回忆了父亲被害的全过程,内容真实可信,语言朴素自然,既具有文学价值,又具有很强的史料价值。选编这篇课文的主要意图,一是使学生借助课文,激发对革命先烈的崇敬之情;二是引导学生领悟课文前后照应的写法。

8、板书装在套子里的人别里科夫的形象——有形的套子套己——无形的套子套人第二课时合作探究:目标挖掘主题及现实意义。问题设置,衔接上节课内容,层层深入。1、结合上节课别里科夫的形象分析:他的思想被什么套住,其悲剧原因在哪?(根据人物形象的分析与社会背景的了解,直击主题。)沙皇腐朽的专制统治套住了他的思想,沙皇的清规戒律使他不敢越雷池一步,所以他是受害者,但他的身份性格以及特定的社会环境,又让他成为沙皇统治的捍卫者。2、他恋爱的情节以及科瓦连科这两个人物的塑造的意义?(从人物以及主题入手,推翻沙皇的腐朽反动的统治,必须是每一个人都敢于打破套子,唤醒革新,更新观念,拒绝腐朽。)别里科夫渴望打破束缚,也想革新,而科瓦连科两个人物体现朝气活泼,以及勇于打破常规束缚的勇气,为革新升起了一片曙光。3、塑造别里科夫的手法,除了一般刻画人物方法外,还有什么方法?

三、说教学目标教学目标1.自主学习字词,会认“妖、矩”等8个生字,会写“介、绍”等13个生字,理解字义,识记字形。正确读写“介绍、神仙、妖怪、每逢、规矩、劈面”等词语。2.自读感悟,理解课文内容,感受童话的奇妙。3.根据已有内容创编故事。教学重难点教学重点:深入理解课文内容,感受童话的奇妙。教学难点:根据已有内容创编故事。四、说教法、学法1.鼓励学生对文本进行个性化、开放性阅读理解,而不是想着怎样将学生的认识以及对文本的理解统一到自己的教学设计之中。2.学生充分自读课文,在理解的基础上谈感受、体会以及对文本的理解,充分体现“以学生为主体”的理念。

学生画完后,将自己的作品贴在黑板上,并向大家讲述自己的想法。然后引导学生思考并讨论:大家同时在圆上作画,为什么画的不一样?(先由学生小组 讨论,然后学生派代表回答,最后老师引导学生归纳小结)通过大家在圆上作画,让学生知道,不同的人对同一件事情会有不同的想象。从而让学生得出结论:同学们的想法不一样。通过这个环节,激发学生想象,让学生自信并成功自己,欣赏、善待他人。活动三:“我们共同描绘五彩的花束” 我们的班级真是丰富多彩的班级,有着各具特色的你我他,老师很奇怪,如果让大家不同的想法集合在一起会怎么样呢?我们一起来试试吧!小组合作 在同一张纸上给花束上色并给它起一个具有你们小组特色的名字,画完欣赏完 的小组快速把图贴在黑板上。以上三个活动 围绕教学目标展开,每个活动都有目的,三个活动贯穿着逻 辑性,逐步提升。最后我说一说课后延伸环节。

设计意图:体会公共设施被破坏,给人们的生活带来的不便和危害。活动二:保护我们的“朋友” 首先,课件出示有关破坏公共设施行为处罚的相关法律条文,学生说一说,破坏公共设施会受到怎样的法律制裁。接着,教师列 举一些社会生活中因破坏公共设施而受到法律制裁的事例。然后,课件出示几个公共设施受到损坏的场景,教师引导学生 说一说,该怎么办?并板书。设计意图:知道爱护公共设施是每个公民的责任和义务,破坏 公共设施会受到法律制裁。活动三:善待我们的“朋友”学生阅读教材第 56 页的两幅图片,倾听一些公共设施的“心 声”。然后,课件出示几幅公共设施的图片,学生小组交流这些公共 设施被损坏的原因,讨论文明使用公共设施的金点子。全班交流汇 报,教师相机引导,并板书。

学生阅读教材第5页阅读角,感受故事中主人翁的内心世界,再想一想“我的故事袋”中都装着哪些事情,其中有能够公开的,与大家分享。设计意图:深入感受自己丰富、独特的内心世界。环节三:感悟明理,育情导行学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:拓展延伸,回归生活回家后,向爸爸妈妈讲一讲独特的自己。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。六、板书设计为了突出重点,让学生整体上感知本节课的主要内容,我将以思维导图的形式设计板书:在黑板左半面的中间位置是课题《我是独特的》,右半面分四行,找一找自己、他人眼中的自己、期望中的自己、我独特的内心世界。其中,找一找自己分为两方面:外貌 独一无二 本领 各不相同;他人眼中的自己,我认可。

1.巧巧给大家带来了自己家乡“西藏”的一个神话传说,播放彔音听一听《“神女峰”的传说》。 2.在小组内分享自己收集的家乡风光照片和有关传说吧。 3.各组的优秀选手迚行全班展示,大屏幕同时展示学生收集的家乡风光照片、景点门票戒者画的家乡风景图。 4.你想到谁的家乡去 小结:同学们能以小组为单位,合作查找同一个家乡不同的资料,真棒正是你们课前像小蜜蜂一样辛勤地劳动,我们的课堂才会如此精彩大家为自己鼓鼓掌。 我们的祖国地大物博,我们的家乡各具特色,请到我的家乡来。 我们的家乡不仅有优美的自然风光和动人的传说,还有丰富的特产和优秀的家乡人,下节课我们继续交流。 5.布置作业 1制作家乡自然风光的剪报和画册。 2收集家乡特产和家乡名人资料,筹备“家乡特产发布会”。

2学情分析在这节课中,我恰当地运用多种教学手段,利用学生及教师自身的优势,在课堂上师生共同参与教学活动,充分发挥了学生的主体作用,使每个学生都成为学习活动的主人,从中获得许多新鲜的感受。本设计从课题入手,设谜导入,通过画一画,引导学生抓住生肖动物的外形特征,要学生利用身边各种材料,设计制作出自己喜爱的或自己的生肖工艺品,让学生感受中国传统文化的源远流长。

一、导入师:今天看见一道题把老师给难住了,想大家帮帮忙,同学们愿不愿意啊?生:愿意师:出示课件(看图猜成语) 生:画蛇添足、虎头蛇尾师:看来大家的语文基础还是很扎实了,谢谢大家的帮忙。大家有没有发现刚才的两个成语有一个共同点是什么?谁能告诉老师今年是什么年?去年是什么年?明年又是什么年?生:蛇年、龙年、马年师:请把你知道的生肖年勇敢、大胆、完整的告诉大家 生:略师:今天就让我们一起走进“十二生肖”的国度。 出示课件《十二生肖》
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。