第二首是中国歌曲《龙咚锵》,欣赏后师生共同讨论下我国过年的习俗,然后在《堆雪人》伴奏的背景音乐下,观看中国过年时的各种场景【白板播放歌曲拖拉图片】这部分环节的设计是让学生初步感受不同地域的音乐风格和音乐所表达的“过新年”热闹氛围,了解过年的风俗,在音乐学习中受到节日文化的熏陶,感受音乐与生活、与自然的关系。最后播放《堆雪人》视频,【白板播放歌曲视频】学生在《堆雪人》的音乐声中,在亲身制作的贺年卡上,贴上雪花窗花贴纸,作为新年的礼物送给父母。感恩父母感受生活的幸福,同时《堆雪人》这首歌曲的旋律也贯穿了整节音乐课。本次是我把电子白板运用到音乐教学中的初次尝试,在制作与操作的过程中明显还不够熟练,有待提高。请在座的各位领导老师们多提宝贵意见,谢谢大家。
教学目标情感目标:演唱***塔塔尔族民歌《丰收的节日》,感受歌曲欢快活泼、热情奔放的情绪,体验人们丰收后载歌载舞的喜悦心情,抒发对美好生活的赞美和热爱。能力目标:尝试在听听、读读、唱唱的音乐实践活动中,运用听唱与视唱相结合的方法学会演唱歌曲第一声部。知识目标:初步学会演唱歌曲《丰收的节日》的第一声部歌词,并能正确运用2/4拍的指挥图示边唱边划拍。教学重、难点 教学重点:初步学会用欢快活泼的情绪,清脆、明亮的声音演唱歌曲《丰收的节日》。 教学难点:在演唱时能初步表现出歌曲欢快活泼、热情奔放的情绪,做到节奏准确,音色统一。 教具准备课件、手风琴养成教育训练点引导学生在合唱时注意两个声部的均衡统一,不能以强压弱。
(3)播放第三部分。重点引导学生从笛子和云锣的演奏中展开丰富想象. 帮助学生养成从“音乐”的角度分析作品的习惯。(4)第四部分的聆听由于与第一部分较为相似,我主要通过音乐速度的变化启发学生感受音乐的变化。3、完整复听 拓展延伸为了使学生对乐曲对民族管弦乐队有更深入的印象,我借助录象,请学生边听边看,并牵引出民族管弦乐队的演出空间布局。随后要求学生即兴对照画面,把全班分为四组按照四种民族乐器分类模仿管弦乐队演出样式,随《丰收锣鼓》音乐徒手演奏。不仅能有效激发孩子对民族音乐的兴趣,同时也进一步复习巩固了民族乐器的四个分类。把音乐课堂推向了高潮。最后一个环节就是小结部分,请学生回去后搜集相关的民乐资料,使学生通过本课的学习更加关注民族音乐。
在这一环节里我设计了让学生们利用高位置的声音轻声朗诵歌词,来理解歌词内容及其主题思想,便于他们在演唱时把握感情表达的分寸。 第六环节是拓展部分,主要是让学生们在《晚风》的旋律中了解一些有关俄罗斯的人土风情,拓展学生的视野。其实对唱好合唱来说,有一个好的“音乐的耳朵”是非常重要的。合唱讲究的是一个整体的合作,只有相互地倾听,求得准确和谐,才能保证合唱的成功。同时合唱时的音准务求准确,这样才能在大家的努力下,共同创造出优美动听的和声,所以每个人对自己所发出的声音,要做到“心”里有数,而这种感觉的建立,有很大一部分依赖于“音乐的耳朵”,要唱得好,首先要听得好。在平时的课堂教学中,要让学生多听,听录音、听教师范唱、听琴弹奏、听学生唱,在多听中培养自己音乐的耳朵。
5、好多同学听到了一些声音,大家再认真听一遍,看还能听出什么声音来。[这个环节是本课重点,刚开始老师引导听,为了不让学生感到枯燥,我特别找了渔舟唱晚的影像资料,结合乐曲欣赏,也能让学生更直观的认知乐曲。最后的复听让学生在主题变换处给老师作出提示手势,增加了互动,也能让学生更好地掌握这首乐曲的结构。](五)拓展延伸 (约6分钟)1、简单介绍民族乐曲在国际上的影响,使学生对民族音乐有自豪感觉,培养学生热爱民族音乐,热爱祖国文化。同学们给的主题提示非常到位,说明我们已经抓住了乐曲的灵魂。《渔舟唱晚》是我国民族音乐殿堂中一颗璀璨的明珠,中国对外文化协会将此曲作为我国民族音乐的代表之一送给国际友人。我国的民族广播乐团在国外演出时,《渔舟唱晚》经常作为重要乐曲演出,并获得国际友人很高的评价。
播放音乐《雨花石》并请学生生观看一些有关石头的图片教师有感情的范唱。教唱歌谱。在教唱歌谱中注意难点的解决,分别出示以小石头造型的节奏卡片,复习四分音符、八分音符及四分休止符。还有新学的音符,十六分休止符。学生根据直观判断时植的长短,并口读,练习。有感情的读歌词听琴声轻声哼唱歌曲。其中请学生体会与比较:运用休止符的地方你有什么样的感受?如果不用会怎样。唱一唱,比一比,说一说。请学生有感情的演唱,教师及时给予鼓励。教师总结石头可贵的精神。石头虽小,却有很多的作用等我们去发现。法国著名艺术家罗丹曾说过:“对于我们的眼睛,不是缺少美,而是缺少发现。”我想,通过这样的教学设计,让学生在音乐中认识美,在生活中寻找美,在未来里创造美,让美融入每一个孩子以上设计肯定还有一些不足之处,敬请各位老师提出宝贵意见。
2、指名读喜欢的部分,师生评议。3、播放歌曲,学生跟唱,引发情感共鸣。[在引导学生走进文本,受到情感熏陶的基础上,进一步引导学生将作者字里行间流露的深情通过朗读表达出来,激发学生与作者情感上的共鸣。使学生的民族自豪感得到培养(五)、拓展延伸1、搜集有关龙的资料,创办专题读书笔记。[这个问题的设计,是在学生深读积累的基础上进行拓展延伸,为学生创造性的学习提供一个空间,从而使学生自主学习的能力得到培养,体现语文工具性与人文性的统一。] 反思:本节课围绕“质疑、解难,读书、感悟,讨论、交流”展开教学,通过听歌导入,图片展示,让学生“乐中求知”,通过自读感悟,小组合作交流,教给学生学习方法,培养学生自主学习的能力,同时教师的相机点拨,又突出了重点。将以人为本,以学生发展为本的教育思想落到了实处。
音乐新课标提供自主合作探究的学习方式,为了让学生进一步感受歌曲的美,我会提问:歌曲为我们展现了芳香四溢的茉莉花,当你面对这样美的花朵时,你还会用什么方式来表现歌曲?学生分组讨论,诱发学生展现自我,培养他们的合作意识、创新意识和创新精神。这时学生以小组为单位,有的用边画边唱的形式,有的用优美的舞蹈表现歌曲,最后全班同学用电子琴边弹边唱《茉莉花》,将课堂气氛推向高潮。在音乐声中,我的本堂音乐课也就轻松的完成了。(四)说教学评价反思本节课的教学,我始终围绕歌曲《茉莉花》为主线,在学生已有的知识水准上,通过听、说、唱、奏、演等艺术表现手法让学生在音乐活动的过程中感受美、表现美、创造美。学生在活动中积极主动。以多媒体课件作为辅助手段,让学生在视觉与共同感观中感受艺术的魅力。
本课我的设计初衷是希望同学们能通过节奏训练,视唱训练将歌曲一步步潜移默化的吸收和掌握。但从学生的表现来看,并不受用。主要原因我反思了下,第一,没有考虑到学生的实际情况,在学生的概念里对音乐课就是玩一玩唱一唱就可以了,讲过的知识也只是听一听而已,并不会刻意的去记一记。学生们的底子也比较薄弱,所以在课堂上所提到的知识点,学生基本上已经忘得差不多了,使练习环节没有达到预期的效果。第二,在课堂上我太过注重将本课设计内容全部完成,却忽视了学生学习情况。第三,在教学中,很多地方太过于专业,使学生上课觉得与知识产生的距离感,导致学生对本课的兴趣减弱。对于以上那个问题,在今后的教学中我会特别注意,音乐基础知识会用一些简单易懂的方法在每节课一点点渗透,让他们在无形之中掌握。课堂上会多关注学生学习情况,掌握情况。切实从学生们的实际出发,让他们真正爱上音乐课,受益于音乐课。
(1)课外排演《日出》(节选)目的是让学生在他们所喜欢的表演过程中对人物语言进行更为深入的领会(2)根据材料,尝试创作一个戏剧片段目的等同于随堂小练习(3)课外阅读全本《日出》(此处用超链接的方式让学生看几张《日出》的剧照,引起学生对阅读全本的兴趣五、说教学预见和反馈1、学生学写的戏剧片断中,人物语言很可能不是很符合人物的身份和性格我认为学生写不好人物语言,是由于写作能力和生活阅历所决定的,不能强求学生写的话一定要像作家所写的那样,生动的反映人物的性格毕竟他们不是戏剧大家,只要他们能大胆的写,基本上能表现人物特点就可以2、探究戏剧矛盾冲突、分析人物性格特点要占用比较多的时间,有可能随堂练习不能在课堂上完成如果出现教学时间比较紧张,不能在课上完成的情况,则将它放在课外
第四环节:森林印象1.完整聆听,找出表现小水花的主题音乐,了解回旋曲式请孩子们听到小水花的主题音乐时,轻轻地唱并用律动表现欢快的小水花——在这我给大家准备了音乐片段由水车上飞溅下来的小水花穿过了小木屋,流进了田野就这样快乐地回旋在森林中……2.介绍作曲家:这么美的音乐是德国喜歌剧作曲家艾伦贝格留给我们的,你想对他说些什么?3.在森林水车的音乐声中朗诵儿童诗来结束本课(希望孩子们就是那快乐的水花)绿色的水车转呀,快乐的小水花呀:飞着、跳着、唱着、笑着一路奔跑,一路播撒,回旋在小溪、田野、山花中一路欢呼,一路舞蹈,是你,是我,是他我们就是一群快乐的小水花!我的说课内容到这就结束了,希望今天我带来的小水花也能回旋在你们的心中
一、 说教材1、教材内容:人教版小学数学第十册《解简易方程》及练习二十六1~5题。2、教材简析:本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。3、教学目标:(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。
(3)设点A的坐标为(m,0),则点B的坐标为(12-m,0),点C的坐标为(12-m,-16m2+2m),点D的坐标为(m,-16m2+2m).∴“支撑架”总长AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函数的图象开口向下,∴当m=3米时,“支撑架”的总长有最大值为15米.方法总结:解决本题的关键是根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解.三、板书设计二次函数y=a(x-h)2+k的图象与性质1.二次函数y=a(x-h)2+k的图象与性质2.二次函数y=a(x-h)2+k的图象与y=ax2的图象的关系3.二次函数y=a(x-h)2+k的应用要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和提高学生学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台.充分利用合作交流的形式,能使教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.
解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.
解析:(1)根据题设条件,求出等量关系,列一元一次方程即可求解;(2)根据题设中的不等关系列出相应的不等式,通过求解不等式确定最值,求最值时要注意自变量的取值范围.解:设购进A种树苗x棵,则购进B种树苗(17-x)棵,(1)根据题意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:购进A种树苗10棵,B种树苗7棵;(2)由题意得17-x172,所需费用为80x+60(17-x)=20x+1020(元),费用最省需x取最小整数9,此时17-x=17-9=8,此时所需费用为20×9+1020=1200(元).答:购买9棵A种树苗,8棵B种树苗的费用最省,此方案所需费用1200元.三、板书设计一元一次不等式与一次函数关系的实际应用分类讨论思想、数形结合思想本课时结合生活中的实例组织学生进行探索,在探索的过程中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,为后面的学习打下基础.
解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)
【教学目标】(一)教学知识点能够利用描点法作出函数 的图象,并根据图象认识和理解二次函数 的性质;比较两者的异同.(二)能力训练要求:经历探索二次函数 图象的作法和性质的过程,获得利用图象研究函数性质的经验.(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解. 【重、难点】重点 :会画y=ax2的图象,理解其性质。难点:描点法画y=ax2的图象,体会数与形的相互联系。 【导学流程】 一、自主预习(用时15分钟)1.创设教学情境我们在教学了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x2入手去研究
雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()解析:∵一次函数和二次函数都经过y轴上的点(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数的图象开口向上,一次函数的图象从左向右上升,故C选项错误;当a<0时,二次函数的图象开口向下,一次函数的图象从左向右下降,故A选项错误,D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 二次函数y=ax2+c的图象与三角形的综合