“整数乘法运算定律推广到小数乘法”是在学生已经掌握了小数乘法计算、整数乘法运算定律的基础上进行教学的。教材通过几组算式,让学生计算出○的左右两边算式的得数,找出它们的相等关系,总结出整数的运算定律对小数同样适用。学好这部分内容,不仅培养学生的逻辑思维能力,而且以后能用本课所学的使一些小数的计算简便,也为以后学习用不同方法解答应用题起着积极的推动作用。2、教学目标的确定:根据教材特点,依据数学课程标准的要求及学生实际,我确定本课教学目标如下:(1)知识能力目标:理解整数乘法运算定律对于小数乘法用样适用,并能应用这些定律进行一些简便计算。(2)过程方法目标:引导学生在经历猜想、验证等数学活动中,发展学生的思维能力。(3)情感态度目标:通过小组合作学习,培养学生进行交流的能力与合作意识,体验到解决问题策略的多样性。结合相关内容,渗透“事物间是普遍联系”的观点,对学生进行辨证唯物主义的启蒙教育。
2、晚自习,教师不得讲课,应让学生自习,吃“自助餐”(以理科为主,高中文科除外)。作业做错的,应更正作业,教师给他批改,并作必要的辅导;优秀学生可看课外书籍、预习明天的功课或练习竞赛一类的拔高题;必要时,文科老师也可与个别学生接触,作短时间的辅导。 3、中午(至下午上课前),教师不得讲课,可以让学生更正上午做错的作业,优秀学生可以自由活动(可以进阅览室看书)。
一、 教材分析《敬业与乐业》是部编版中学语文九年级上册第二单元的一篇课文,它是梁启超的一篇有关事业与人生的演讲稿。文章层次清楚、条理清晰、论据充分,发人深思,让学生们体会敬业乐业的趣味。二、 学情分析:九年级学生对议论文体已有了初步的认识,并且已经开始学习写一些简单的议论文。但无论从学生的阅读还是写作来看,学生对议论文掌握的情况都有待加强。本篇课文无论在议论的层次、结构还是方法等方面都是最有代表性的,也是演讲的特点和技巧体现得很明显的文章,因此,有必要学习。三、 教学目标根据教材分析和学生实际能力特点,我确定了如下的教学目标:知识与技能:在反复阅读课文的基础上,找出作者的主要观点,梳理出作者的论证思路,体会并领悟敬业与乐业的精神,从中受到人文熏陶。过程与方法:学习本文运用的多种论证方法,条理清楚地阐述自己的观点。
一、导入新课在《摔跤吧!爸爸》这部电影中,男主角阿米尔·汗为塑造形象先增肥28公斤再暴瘦25公斤,只为了拍好适应不同年龄的角色。不过,为了一部电影付出如此努力,你们觉得是否有此必要呢?(引导学生稍做讨论)是的,有必要,因为这正是他敬业精神的体现,正是他的敬业精神,让他的电影一次次取得成功。敬业,不仅是阿米尔·汗独有的话题,在近代,我国思想家梁启超就已经很深入地探讨了敬业甚至乐业的重要性。今天,就让我们一起学习这位思想家的演讲稿——《敬业与乐业》,在感知先哲思想风采中,去观照自己的学习精神和生活态度,领悟人生价值。二、教学新课目标导学一:认识作者作者简介:梁启超(1873—1929),近代思想家,著名学者。字卓如,号任公,别号饮冰室主人。广东新会人。与其师康有为一起领导了“戊戌变法”。他兴趣广泛,学识渊博,在文学、史学、哲学、佛学等诸多领域都有较深的造诣。他一生著述宏富,所遗《饮冰室合集》计148卷,1000余万字。
做一个有道德、有理想的人尊敬的各位领导、老师们、同学们:大家上午好!今天我要讲话的题目是《做一个有道德、有理想的人》。近日来,团委开展了“20**年度十佳学生”的评选,经过全校同学的投票,从15名候选人中最终评选出了“20**年度十佳学生”。他们中,有言语不凡、hold住全场的孙乐君,有待人谦和有礼、乐于助人的陈雨帆,有不断超越、追求卓越的郑熙,有温文尔雅、谦俭恭和的黄皓,还有狭路相逢、敢于亮剑的纵横辩论社员们…十佳的评选,不仅仅是为了表彰他们,分享他们的学习生活经验,体会那份真实与感动,更是为了激励更多的一中学子们奋发向上,超越梦想。在此,我代表学生会向全校同学发出倡议,我们要向十佳学生学习,做一个有道德、有理想的人。我们要做一个有道德的人。中华民族历来有崇德重德,尚德倡德的传统,常言道:“人无德不立,国无德不兴。”,强调的就是道德对于个人修身立业和国家长治久安有重要作用。怎样做一个有道德的人?我个人认为,首先要做到“勿以善小而不为,勿以恶小而为之”。
做一个有道德的人尊敬的老师们,同学们:早上好!今天我讲话的题目是《做一个有道德的人》。记得意大利诗人但丁曾说过这样一句话:“一个知识不健全的人可以用道德去弥补,而一个道德不健全的人却难于用知识去弥补。”是的,我们的国家和民族最需要的是道德高尚的知识者。我们中华民族历来崇尚道德。无论是以孔子为代表的儒家思想,还是以老子为代表的道家思想,无不都以高尚的道德做为他们的至高境界。宋代文人苏辙就曾写道:“辙生好为文,思之至深。以为文者气之所形,然文不可以学而能,气可以养而至。”这就说明,道德是做人的基本准则,只要我们能够从身边的小事做起,就会成为有道德的人。
二、说教法:我在设计这节课时努力实践新课程理念,充分突出学生的主体地位选择教学方法,整堂课以“在情节与现实写照中得到情感体验”为教学主线,通过整体感知,情节领悟,细节品味等途径,运用快速阅读,自主合作探究等方法,引导学生深入文本,感受主旨,与文章对话,与自己对话,与同学老师对话,在这种感受,体验、交流的课堂学习过程中逐步提升情感态度价值观。三、说学法:采用“自主、合作、探究”的学习方式,让学生自主进入文本,读出感受,通过小组合作交流探究来解决问题。【二·三理论依据】教学过程必须根据学生语文学习的特点,关注学生的个体的学习需求,爱护学生的好奇心,求知欲,充分激发学生的主动意识,倡导自主、合作、探究的学习方式,有助于学生学习方式的形成。
尊敬的各位评委老师、同仁们:大家好!今天我要进行说课的课题是《几分之几》。下面我对本课题主要从教材、教学目标、重难点、教法、学法、教学过程、板书设计等几方面进行简单分析。一、说教材(地位与作用)《几分之几》是人教版三年级第八单元第2个课时。在此之前,学生们已经学习了“几分之一”,这为过度到本课题的学习起到了铺垫的作用。而本课题的理论、知识等是学好分数的基础,它在整个分数的学习中起着承上启下的作用。二、说教学目标根据本教材的结构和内容,结合着三年级学生的认知结构及其心理特征,本节课我制定了以下三维教学目标:通过观察、猜测、比较、动手操作等合作参与数学学习活动,掌握分数表示的意义,感受数学与生活的密切联系,激发学习数学、探索数学的浓厚兴趣,使学生在数学活动中养成与人合作的良好习惯。从而掌握几分之几的读写和同分母的大小比较,理解分数各部分的名称及各部分表示的意义,初步培养有序地全面地思考问题的能力。
三、说教法学法宇宙生命之谜是一个永恒的主题。我是谁?我从哪里来?将要去向哪里?在茫茫宇宙中,人类是不是唯一的存在?每个成长中的个体,或多或少都会对这些问题进行过探索。六年级学生阅读能力增强,内心世界更为丰富,对于自身以及自身与这个世界的关系尤为关注。因此,文章前的导语说,“有位同学找到了这篇文章”,可见,孩子们对宇宙之谜怀有极大的热情和兴趣。因此,教学这篇文章要以学生的兴趣和好奇心为出发点。《语文课程标准》明确指出:“积极倡导自主、合作、探究的学习方式”,要充分发挥学生的主体作用,全面提高学生的语文素养。基于以上认识,我主要采用以读为主,读思议相结合以及引扶放相结合的方法,引入恰当的游戏教学,让学生在把握内容的基础上探究理解,辩论解疑,而教师引导流程,放手让学生自学、探究,点拨重难点,充分发挥学生的主体作用。
一、说教材: 《宇宙生命之谜》这篇课文介绍了科学家探索地球之外是否有生命存在的艰难历程,说明到目前为止,地球之外是否有生命存在,仍然是一个未解的谜。课文从古代神话讲起,引出了“地球之外的太空中是否有生命存在”这个问题;接着概括地说明,从理论上猜测,地球绝不是有生命存在的唯一天体,但是至今尚未找到另外一颗有生命的星球;然后具体地介绍了科学家探索的历程(先研究了生命存在必须具备的条件;再根据这些条件对太阳系除地球之外的其他行星进行了分析,得出了太阳系中唯一有可能存在生命的星球是火星;然后利用宇宙飞船对火星作近距离的观测,又让宇宙飞船在火星登陆,进行了一系列的分析测试);最后说明,人们至今尚未在地球之外的太空中找到生命,但科学家仍然相信那里存在着生命,因此,地球之外是否有生命存在,仍然是一个谜。选编这篇课文的主要意图,是通过阅读理解,学习科学家追求真知、不断探索的精神,激发学生爱科学、学科学、探索宇宙奥秘的兴趣。
一、导入新课到了九年级,同学们都觉得自己长大了。的确,你们的身高或许超过了父母、老师,但你们的心理“长大”了吗?能否独自面对生活的风雨?有一个少年,因家道中落而失学,跟随父亲到芦苇荡里放鸭。生活的艰苦、精神的寂寞,使他痛苦也令他成长。一场暴风雨后,他觉得自己突然长大了、坚强了。你有这样“长大”的体验吗?今天我们一起来学习小说《孤独之旅》。二、教学新课目标导学一:背景资料本文节选自《草房子》,小说以一座建在草房子里的小学为背景,描绘了桑桑、杜小康、秃鹤、纸月、细马等几个少男少女读书、生活、成长的历程。本文节选部分写的是少年杜小康与厄运抗争的经历。杜小康原本生活在油麻地家底最厚实的人家,富裕的生活、优异的成绩,使他一直有一种优越感。然而,一次意外变故,家道中落,他被迫辍学,过早地担负起生活的重担,跟随父亲背井离乡去放鸭。
(3)对未来前途的恐惧:漫漫放鸭路,何处是尽头?对前途的迷茫和惶恐。学会深度解读题目,能帮助学生更好地理解人物形象、情感脉络以及文章主旨。引导学生结合生活体验加深对“孤独”的理解,对于学生的思维深度开发有好处,同时对于作文诗意化拟题也大有裨益。三、拓展,走出孤独有些孤独,其实是我们成长过程中的一些无法回避的元素。我们要成长,就不能不与这些孤独结伴而行。——曹文轩1.思考问题从哪些地方可以看出杜小康走出孤独,走向成熟了呢?旁批:暖色的结尾,充满希望。课件出示:他惊喜地跑过去捡起,然后朝窝棚大叫:“蛋!爸!鸭蛋!鸭下蛋了!”杜雍和从儿子手中接过还有点儿温热的蛋,嘴里不住地说:“下蛋了,下蛋了……”预设:风雨过后是彩虹,孤独痛苦是成长的催化剂。暗示主人公走向成熟。这叫喊声里满是成长的自豪和骄傲。
本节通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。课程目标1.了解二分法的原理及其适用条件.2.掌握二分法的实施步骤.3.通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.数学学科素养1.数学抽象:二分法的概念;2.逻辑推理:用二分法求函数零点近似值的步骤;3.数学运算:求函数零点近似值;4.数学建模:通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用.
本节课选自《普通高中课程标准数学教科书-必修一》(人教A版)第三章《函数的概念与性质》,本节课是第2课时,本节课主要学习函数的三种表示方法及其简单应用,进一步加深对函数概念的理解。课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.课程目标 学科素养A.在实际情景中,会根据不同的需要选择恰当的方法(解析式法、图象法、列表法)表示函数;B.了解简单的分段函数,并能简单地应用;1.数学抽象:函数解析法及能由条件求函数的解析式;2.逻辑推理:求函数的解析式;
课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.课程目标1、明确函数的三种表示方法;2、在实际情境中,会根据不同的需要选择恰当的方法表示函数;3、通过具体实例,了解简单的分段函数,并能简单应用.
《数学1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本节课要求学生根据具体的函数图象能够借助计算机或信息技术工具计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法,从中体会函数与方程之间的联系;它既是本册书中的重点内容,又是对函数知识的拓展,既体现了函数在解方程中的重要应用,同时又为高中数学中函数与方程思想、数形结合思想、二分法的算法思想打下了基础,因此决定了它的重要地位.发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。课程目标 学科素养1.通过具体实例理解二分法的概念及其使用条件.2.了解二分法是求方程近似解的常用方法,能借助计算器用二分法求方程的近似解.3.会用二分法求一个函数在给定区间内的零点,从而求得方程的近似解. a.数学抽象:二分法的概念;b.逻辑推理:运用二分法求近似解的原理;
新知探究:向量的减法运算定义问题四:你能根据实数的减法运算定义向量的减法运算吗?由两个向量和的定义已知 即任意向量与其相反向量的和是零向量。求两个向量差的运算叫做向量的减法。我们看到,向量的减法可以转化为向量的加法来进行:减去一个向量相当于加上这个向量的相反向量。即新知探究(二):向量减法的作图方法知识探究(三):向量减法的几何意义问题六:根据问题五,思考一下向量减法的几何意义是什么?问题七:非零共线向量怎样做减法运算? 问题八:非零共线向量怎样做减法运算?1.共线同向2.共线反向小试牛刀判一判(正确的打“√”,错误的打“×”)(1)两个向量的差仍是一个向量。 (√ )(2)向量的减法实质上是向量的加法的逆运算. ( √ )(3)向量a与向量b的差与向量b与向量a的差互为相反向量。 ( √ )(4)相反向量是共线向量。 ( √ )
求函数的导数的策略(1)先区分函数的运算特点,即函数的和、差、积、商,再根据导数的运算法则求导数;(2)对于三个以上函数的积、商的导数,依次转化为“两个”函数的积、商的导数计算.跟踪训练1 求下列函数的导数:(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟踪训练2 求下列函数的导数(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的饮用水通常是经过净化的,随着水的纯净度的提高,所需进化费用不断增加,已知将1t水进化到纯净度为x%所需费用(单位:元),为c(x)=5284/(100-x) (80<x<100)求进化到下列纯净度时,所需进化费用的瞬时变化率:(1) 90% ;(2) 98%解:净化费用的瞬时变化率就是净化费用函数的导数;c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2
授课 日期 班级16高造价 课题: §10.1 计数原理 教学目的要求: 1.掌握分类计数原理与分步计数原理的概念和区别; 2.能利用两个原理分析和解决一些简单的应用问题; 3.通过对一些应用问题的分析,培养自己的归纳概括和逻辑判断能力. 教学重点、难点: 两个原理的概念与区别 授课方法: 任务驱动法 小组合作学习法 教学参考及教具(含多媒体教学设备): 《单招教学大纲》、课件 授课执行情况及分析: 板书设计或授课提纲 §10.1 计数原理 1、加法原理 2、乘法原理 3、两个原理的区别
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 10.4 用样本估计总体 *创设情境 兴趣导入 【知识回顾】 初中我们曾经学习过频数分布图和频数分布表,利用它们可以清楚地看到数据分布在各个组内的个数. 【知识巩固】 例1 某工厂从去年全年生产某种零件的日产记录(件)中随机抽取30份,得到以下数据: 346 345 347 357 349 352 341 345 358 350 354 344 346 342 345 358 348 345 346 357 350 345 352 349 346 356 351 355 352 348 列出频率分布表. 解 分析样本的数据.其最大值是358,最小值是341,它们的差是358-341=17.取组距为3,确定分点,将数据分为6组. 列出频数分布表 【小提示】 设定分点数值时需要考虑分点值不要与样本数据重合. 分 组频 数 累 计频 数340.5~343.5┬2343.5~346.5正 正10346.5~349.5正5349.5~352.5正  ̄6352.5~355.5┬2355.5~358.5正5合 计3030 介绍 质疑 引领 分析 讲解 说明 了解 观察 思考 解答 启发 学生思考 0 10*动脑思考 探索新知 【新知识】 各组内数据的个数,叫做该组的频数.每组的频数与全体数据的个数之比叫做该组的频率. 计算上面频数分布表中各组的频率,得到频率分布表如表10-8所示. 表10-8 分 组频 数频 率340.5~343.520.067343.5~346.5100.333346.5~349.550.167349.5~352.560.2352.5~355.520.067355.5~358.550.166合 计301.000 根据频率分布表,可以画出频率分布直方图(如图10-4). 图10-4 频率分布直方图的横轴表示数据分组情况,以组距为单位;纵轴表示频率与组距之比.因此,某一组距的频率数值上等于对应矩形的面积. 【想一想】 各小矩形的面积之和应该等于1.为什么呢? 【新知识】 图10-4显示,日产量为344~346件的天数最多,其频率等于该矩形的面积,即 . 根据样本的数据,可以推测,去年的生产这种零件情况:去年约有的天数日产量为344~346件. 频率分布直方图可以直观地反映样本数据的分布情况.由此可以推断和估计总体中某事件发生的概率.样本选择得恰当,这种估计是比较可信的. 如上所述,用样本的频率分布估计总体的步骤为: (1) 选择恰当的抽样方法得到样本数据; (2) 计算数据最大值和最小值、确定组距和组数,确定分点并列出频率分布表; (3) 绘制频率分布直方图; (4) 观察频率分布表与频率分布直方图,根据样本的频率分布,估计总体中某事件发生的概率. 【软件链接】 利用与教材配套的软件(也可以使用其他软件),可以方便的绘制样本数据的频率分布直方图,如图10-5所示. 图10?5 讲解 说明 引领 分析 仔细 分析 关键 语句 观察 理解 记忆 带领 学生 分析 25
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。