一是进一步优化信贷结构,加大对民营和小微企业、乡村振兴、绿色低碳等重点领域的金融支持;积极推广“小微易贷”“极速贷”等线上普惠金融产品,实现客户申请、审查审批、放款提款在线化“非接触融资服务”,不断提高普惠金融的覆盖面。二是推动降费让利政策精准落地,主动向小微企业、个体工商户宣传减费让利政策,以“应知尽知”确保“应享尽享”。认真落实普惠小微支持工具相关政策,按照市场化原则对各类市场主体应贷尽贷,对贷款利率应降尽降,对贷款费用应免尽免,对贷款程序应简尽简。三是进一步下沉金融服务,积极推进数字金融的赋能乡村振兴,纵深推进农村信用体系建设;紧盯辖内特色种养殖业、特色优势农产品、乡村旅游以及返乡创业群体,创新推出适配性强的金融产品和服务,全力支持乡村振兴发展。
加强部门协作,确保今年的衔接资金项目实施进度;进一步强化档案管理,及时收集、整理村级档案和扶贫包资料,对前期收集的资料及时进行完善,确保在各级督查检查和评估时有据可依、有证可查。 2.做好常态化监测。每月开展逐户逐人逐项开展入户走访排查,对区域内的困难户、突发情况户进行摸排并会商,切实解决政策理解不精准、监测不及时不全面、精准帮扶不到位、风险消除简单化等突出问题、精准识别监测对象,将有返贫致贫风险和突发严重困难的农户全部纳入监测范围,强化精准施策,推动政策落实,坚决守住不发生规模性返贫的底线。 3.做好集中排查各项工作。按时保质保量完成本次集中排查工作,针对符合条件的户按照程序纳入监测户管理。针对排查出的问题加强督查检查和部门联动,按时完成集中排查的问题整改,解决农户实际困难,确保不发生返贫致贫等问题。
2.残疾人体育事业取得长足进步。一是区残联出任中国残疾人自行车队领队,带领10名残疾人运动员赴*参加2024年亚洲残疾人自行车场地锦标赛,共斩获27金4银1铜,成功获得2024年国际自行车联盟(UCI)残疾人自行车场地世锦赛参赛资格。组织我区15名残疾人参加并夺得第七届中国残疾人冰雪季活动暨2024年*市旱地冰壶锦标赛冠军。组织我区20名残疾人运动员代表*市残疾人游泳队参加第九届省残运会6个项目的比赛,取得8金2银6铜优异成绩。二是组织我区20名特殊儿童参加*市残联第十七届全国特奥日暨第二届足球嘉年华活动。整合攀岩、游泳、网球、冰球、帆船多方资源,成立*区特殊儿童运动康复基地联盟,为促进特殊儿童体育职业化发展奠定基础。三是组织我区12名残疾人体育工作者参加全市残疾人体育运动健身能力评估培训,提高残疾人体育工作者能力。
3、注重五育并举实施途径,树立“五育并举”的育人观,拓宽“五育并举”的实施途径,优化“五育并举”干部教师队伍,构建“五育并举”监测评价体系。4、在五育并举工作中,贯彻好因地制宜原则、适应性原则、普及性的原则、全面性原则、以人为本原则。5、为切实保证五育并举工作实施,学校将抓好宏观谋划和调度总结;完善设施设备,做好后勤保障;开展丰富多彩活动,搭建好五育并举展示平台。(五)安全及后勤工作1、安全工作(1)牢固树立“安全第一、预防为主、综合治理”工作方针,全面落实安全目标责任制。强化安全目标责任意识,落实“一岗双责”,确定安全责任管理主体,全员、全面,全过程落实管理工作。(2)开齐开足安全教育课;充分发挥“济南市学校安全教育平台”的资源优势,继续深化“1530”安全警示教育,利用开学初、寒暑假、重大节日等时机,通过各类主题教育活动,增强安全教育的针对性和实效性。实时举办法制讲座和心理健康讲座,增强学生的法制观念,提髙学生辨别是非和自我调控的能力,继续开展好每周一次的国旗下安全教育活动。
(三)部分工作需要多部门合作,移民搬迁安置扫尾工作推进缓慢。一是部分电站所涉及安置地变化、实物指标变化、库底清理资金增加等问题还未进行移民安置规划修编;二是库区淹没征地线界桩未设立矛盾纠纷多;三是涉及改(复)建的国有企事业单位国有土地手续办理费用、搬迁安置户宅基地证手续办理费用未落实;四是部分电站改复建工程设计变更未完成,无法结算审计验收;五是部分电站移民安置逐年实物长效补偿资金不能按时兑现;六是在水利工程移民安置工作中重工程轻移民,导致移民安置工作推进滞后(如小地方水库的移民至今未搬迁无法下闸蓄水,*灌区移民初步设计滞后项目初设无法审批)。三、下半年工作计划(一)按期完成移民搬迁安置任务。一是聘请中介启动三岔河水电站资金、项目档案清理工作。
下半年年,我公司将坚持“xx”的原则,按照改革既定时间表、任务书,重点抓好以下几个方面的工作:(一)聚焦深化改革,坚持解放思想,夯实高质量发展思想基础xx改革已经落实落地,但我们作为企业运营才刚刚起步。广大干部职工在思维上还没有从xx转变为xx,思想上还没有完全适应现代企业。要进一步解放思想、打开思路、对标看齐,不断巩固“xx”专项活动成果,围绕高质量发展要求,贯彻落实新发展理念,进一步战略性布局、前瞻性思考产业经济发展,教育引导广大干部职工牢固树立严谨认真的处事态度、求真务实的工作作风。努力实现在思想上破冰、在行动上突围、在改革上发力、在发展上突破,真正以思想大解放推动改革再深入、实践再创新。(二)聚焦提质增效,深化规范运行,健全高质量发展制度体系
二是聚焦能力建设,掌握新技术,打造竞争力。当前检测企业间竞争日趋激烈,国际事业部人才流失较为明显,推动发展的“驱动力”呈现弱势。我们将围绕国际化人才梯队建设,出台配套支持政策,提升队伍能力,快速掌握Wi-Fi7、5G毫米波等前沿无线技术,提升本地化测试能力,解决客户产品全生命周期中面临的新技术导入滞后、认证标准理解偏差等问题,助力企业打造具有国际竞争力的产品。三是聚焦业务推厂,瞄准大趋势,实现大突破。面对国际认证市场日益萎缩的现状,我们将把视线放到发展“潜力”上来,更加重视“一带一路”国家和第三世界国家的需要,立足检测中心的技术、服务优势,依托我国“一带一路”整体思路,针对发展中国家检测能力弱、发展需求大等特点,以产业升级、技术出口,找到国际业务发展“突破点”“新蓝海”。
1、通过同位之间互说座位位置,检测知识目标2、3的达成效果。2、通过导学案上的探究一,检测知识目标2、3的达成效果。 3、通过探究二,检测知识目标1、3的达成效果。 4、通过课堂反馈,检测总体教学目标的达成效果。本节课遵循分层施教的原则,以适应不同学生的发展与提高,针对学生回答问题本着多鼓励、少批评的原则,具体从以下几方面进行评价:1、通过学生独立思考、参与小组交流和班级集体展示,教师课堂观察学生的表现,了解学生对知识的理解和掌握情况。教师进行适时的反应评价,同时促进学生的自评与互评。2、通过设计课堂互说座位、探究一、二及达标检测题,检测学习目标达成情况,同时有利于学生完成对自己的评价。3.通过课后作业,了解学生对本课时知识的掌握情况,同时又能检测学生分析解决问题的方法和思路,完成教学反馈评价。
2重点难点教学重点了解我国古代建筑的外观造型、建筑结构、群体布局、装饰色彩。教学难点对我国古代建筑的欣赏感受能力,能够从外观、结构、布局、装饰、类别来欣赏祖国古代的建筑艺术。3教学过程3.1 第一学时教学活动活动1【导入】观察建筑,点出建筑(设计意图:了解建筑的基本特点)1、同学们,我们坐在什么地方?(教室)2、让我们来观察一下,它都有哪些部分组成?(墙壁、天花板、地面、门窗)3、还有什么地方有这些特点?(电影院、家… …)4、 [课件1:现代建筑]这些都叫做“建筑”。(板书)
提问:1.怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系? 2.判断下面两种量是否成正比例?为什么? (1)时间一定,行驶的路程和速度 (2)除数一定,被除数和商 3.单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例? 4.导入新课: 如果总价一定,单价和数量的变化有什么规律?这两种量存在什么关系?今天,我们就来研究这种变化规律。
一、整体情况(一)案件查办总体情况1.案件数量情况:2022年1-7月份药化械案件10件,同比增长900%。其中药品类案件2件,同比增长100%,医疗器械类案件3件,化妆品类案件5件。药品类案件中使用《中华人民共和国药品管理法》的规定予以处罚的案件有1件,使用《药品流通监督管理办法》予以行政处罚的案件有1件。3件医疗器械类案件涉案产品都是未经注册、无合格证明文件的医用口罩。2.行政处罚情况:2022年1-7月份药品类案件2件,给予财产罚的案件2件,同比增长100%;医疗器械类案件3件,给予财产罚的案件3件;化妆品类案件5件,其中给予财产罚的案件4件,给予名誉罚的案件1件。(二)药品医疗器械化妆品案件查办重点情况1.药品案件:2022年1月-7月,本辖区共查处2家药品经营单位,其中1家存在拆零药品包装上无有效期的行为,使用新的《中华人民共和国药品管理法》给予当事人警告。2.医疗器械案件:2022年1月-7月,本辖区共查处3家医疗器械经营单位,3家违法单位的涉案产品均为医用口罩。
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.1两角和与差的正弦公式与余弦公式. *创设情境 兴趣导入 问题 两角和的余弦公式内容是什么? 两角和的余弦公式内容是什么? 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 5*动脑思考 探索新知 由同角三角函数关系,知 , 当时,得到 (1.5) 利用诱导公式可以得到 (1.6) 注意 在两角和与差的正切公式中,的取值应使式子的左右两端都有意义. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 启发引导学生发现解决问题的方法 15*巩固知识 典型例题 例7求的值, 分析 可以将75°角看作30°角与45°角的和. 解 . 例8 求下列各式的值 (1);(2). 分析 (1)题可以逆用公式(1.3);(2)题可以利用进行转换. 解(1) ; (2) . 【小提示】 例4(2)中,将1写成,从而使得三角式可以应用公式.要注意应用这种变形方法来解决问题. 引领 讲解 说明 引领 分析 说明 启发 引导 启发 分析 观察 思考 主动 求解 观察 思考 理解 口答 注意 观察 学生 是否 理解 知识 点 学生 自我 发现 归纳 25
教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 8.3 两条直线的位置关系(一) *创设情境 兴趣导入 【知识回顾】 我们知道,平面内两条直线的位置关系有三种:平行、相交、重合.并且知道,两条直线都与第三条直线相交时,“同位角相等”是“这两条直线平行”的充要条件. 【问题】 两条直线平行,它们的斜率之间存在什么联系呢? 介绍 质疑 引导 分析 了解 思考 启发 学生思考*动脑思考 探索新知 【新知识】 当两条直线、的斜率都存在且都不为0时(如图8-11(1)),如果直线平行于直线,那么这两条直线与x轴相交的同位角相等,即直线的倾角相等,故两条直线的斜率相等;反过来,如果直线的斜率相等,那么这两条直线的倾角相等,即两条直线与x轴相交的同位角相等,故两直线平行. 当直线、的斜率都是0时(如图8-11(2)),两条直线都与x轴平行,所以//. 当两条直线、的斜率都不存在时(如图8-11(3)),直线与直线都与x轴垂直,所以直线// 直线. 显然,当直线、的斜率都存在但不相等或一条直线的斜率存在而另一条直线的斜率不存在时,两条直线相交. 由上面的讨论知,当直线、的斜率都存在时,设,,则 两个方程的系数关系两条直线的位置关系相交平行重合 当两条直线的斜率都存在时,就可以利用两条直线的斜率及直线在y轴上的截距,来判断两直线的位置关系. 判断两条直线平行的一般步骤是: (1) 判断两条直线的斜率是否存在,若都不存在,则平行;若只有一个不存在,则相交. (2) 若两条直线的斜率都存在,将它们都化成斜截式方程,若斜率不相等,则相交; (3) 若斜率相等,比较两条直线的纵截距,相等则重合,不相等则平行. 讲解 说明 引领 分析 仔细 分析 讲解 关键 词语 思考 理解 思考 理解 带领 学生 分析 引导 式启 发学 生得 出结 果
例2是面包房买卖面包的情境。解决问题的重点是学会使用小括号列综合算式,并了解小括号的作用。通过学生熟悉的购买面包的情境,解决“还剩多少个”这个实际问题。仍然可以引导学生从不同的角度思考问题,启发列式为54-8-22或为54-(8+22)。第二种解法的综合算式,教材中特别强调“如果写成一个算式,应该使用小括号”,并明确“计算时先算小括号里面的”。因为是初次在列式时需要使用小括号,如果学生产生疑问,教师可组织学生通过回顾旧知,利用现实情境,明确使用小括号的必要性及使用方法。教学例2时可以采用与例1相似的教学方式。首先让学生观察下页图,也可以利用电教媒体创设情境,由学生提出问题,并启发学生思考如何解决。让学生充分交流研讨,畅谈自己的想法,然后着重说明解决问题的思路。列式计算时可以先分步列式,同时强调两种列式方法的内在联系,列综合算式时着重说明使用小括号的目的。
一 说教材运算定律和简便计算的单元复习是人教版第八册第三单元内容,属于“数与代数”领域。本节内容是在学生学习了运算定律(加法交换律、加法结合律、乘法交换律、乘法结合律和乘法分配律)以及基本的简便计算方法(连减、连除)基础上进行的整理复习课。二、说教学目标及重难点1、通过复习、梳理,学生能熟练掌握加法、乘法等运算定律,能运用运算定律进行简便计算。2、培养学生根据实际情况,选择算法的能力,能灵活地解决现实生活中的简单实际问题。教学重点:理解并熟练掌握运算定律,正确进行简便计算。教学难点:根据实际,灵活计算。三、说教法学法根据教学目标及重难点,采用小组合作、自主探究、动手操作的学习方式。四、说教学过程
三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具 高考试题中近一半的试题与这三个“二次”问题有关 本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。课程目标1. 通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。2. 使学生能够运用二次函数及其图像,性质解决实际问题. 3. 渗透数形结合思想,进一步培养学生综合解题能力。数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。
本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》第五章的5.5.1 两角和与差的正弦、余弦和正切公式。本节的主要内容是由两角差的余弦公式的推导,运用诱导公式、同角三角函数的基本关系和代数变形,得到其它的和差角公式。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。课程目标 学科素养1.了解两角差的余弦公式的推导过程.2.掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式.3.熟悉两角和与差的正弦、余弦、正切公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.4.通过正切函数图像与性质的探究,培养学生数形结合和类比的思想方法。 a.数学抽象:公式的推导;b.逻辑推理:公式之间的联系;c.数学运算:运用和差角角公式求值;d.直观想象:两角差的余弦公式的推导;e.数学建模:公式的灵活运用;
本节内容是三角恒等变形的基础,是正弦线、余弦线和诱导公式等知识的延伸,同时,它又是两角和、差、倍、半角等公式的“源头”。两角和与差的正弦、余弦、正切是本章的重要内容,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有着重要的支撑作用。 课程目标1、能够推导出两角和与差的正弦、余弦、正切公式并能应用; 2、掌握二倍角公式及变形公式,能灵活运用二倍角公式解决有关的化简、求值、证明问题.数学学科素养1.数学抽象:两角和与差的正弦、余弦和正切公式; 2.逻辑推理: 运用公式解决基本三角函数式的化简、证明等问题;3.数学运算:运用公式解决基本三角函数式求值问题.4.数学建模:学生体会到一般与特殊,换元等数学思想在三角恒等变换中的作用。.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。